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Complexity and stability of ecosystems

Lough Hyne, Ireland

» Natural ecological communities: highly diverse and complex systems
» What structures these communities (and how)?

» What are the mechanisms that stabilise the communities?



Food webs: Networks of predator-prey interactions

Lough Hyne food web (picture: econetlab)



Overview

» Introduction: Stability of food webs

» Relation between predator-prey size ratio and food-web stability

» How dynamic effects of body size structure food webs



Network structure of food webs

» S nodes (populations)

» L links (trophic interactions) — C = L/S? connectance
(network complexity)

» trophic levels, trophic similarity, degree distributions,...



Dynamical system

simplest case: one variable per species, e.g. biomass density B;

dB;(t)

= intrinsic growth (only for basal species)

dt

-+ consumption of other species (B)
—  being preyed upon by other species (B)
— respiration and mortality

i

(R. MacArthur, Ecology, 1955)



Dynamical system

simplest case: one variable per species, e.g. biomass density B;

dB;(t)

= intrinsic growth (only for basal species)

dt

-+ consumption of other species (B)
—  being preyed upon by other species (B)
— respiration and mortality

That's not stable!

(at least if av/SC > 1)
(R. May, Nature, 1972)



Stability of model food webs
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Structure of networks

O Random networks:

\\ 7 no restrictions on interactions

O all types of interactions
O O (exploitation, competition, mutualism)



Structure of networks

Real networks:
feeding hierarchy

log, (predator mass)

log, (prey mass)



Population dynamics

dB;(t)

5 = > eigi(B)B; gj : consumption on prey j
JER;
— ) 9u(B)Bx gk : consumption by predator k
keP;
— XxB; X; : mass-specific metabolic rate

consumption rate:

f.B:
(B) = [— 1B
9i(B) By +3, 1B

Ii: max. mass-specific consumption rate

Mass-specific rates are not constant!



Allometric scaling of physiological rates
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(Brown et al., Ecology, 2004) I=yx=>1~m



Allometric scaling of physiological rates

dBi(t
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Allometric scaling enhances stability in complex food webs

CONSUMER-RESOURCE BODY-SIZE RELATIONSHIPS
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Allometric scaling enhances stability in complex food webs
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(Brose et al., Eco. Lett. 2006)



How does it work?

t) -3 fiB; -1 B -1
—_— = ejyxom, * ——————B;— yxom, * ———=———Bx—xom, *B;
]EZ&, ! ! BO + ZIGF],, fi/B/ ! I;P, k BO + Z/ERK ! !
_1
divide by m; *:

1

f//B Mg 4 fiBi
EjyXos——at——Bi— > yx ( ) =Bk —XxB;
m. * ,ezn: "B+ 2ien, TiBi ,; m; Bo + 3 icp,

time scale effect: large species have slower dynamics
predation effect: reduction of predation pressure if predator is larger than prey



random model niche model
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Allometric scaling enhances stability of food webs

Predation effect: release of prey from top-down control

Required: network structure imposing feeding hierarchy



Variable network structure: adaptive foraging dynamics

per capita growth rate:

dB;(t)
dt

consumption rate:

'/fij \fik B) — f;B;
% ;)\ gi/( )—Mxim

adaptation: replicator dynamics
dfy oG; aG;
dat ( ofy Z T o Of )

» evolutioary stable strategy

= Gi(B)B;

» time budget constrained: >, f; = 1



Variable network structure: adaptive foraging dynamics
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(Uchida and Drossel, J. Theor. Biol. 2007)

Diversity S

“Positive complexity-stability relation, if complexity means more potential prey species.”



Interactive effects of body-size structure and adaptive foraging
(Heckmann et al., Ecol. Lett. 2012)

niche model random model
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dB;i(t)
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JjER; keP;

dt

1i(Bi, m)Bi = pom; V/* B?



Results I: Persistence

allometry coefficient x
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Results II: Network structure

relative prey niche values (random model) s’
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Dynamics explains structure
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Summary

In size-structured food webs (predators are larger than their prey):

v

allometric scaling of physiological rates stabilises the network

v

due to a release of the prey from top-down pressure

» interactive effect of foraging adaptation and allometric scaling

v

adaptive ordering of random networks

v

stable size structure as an emergent phenomenon
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