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Trait-Based Approach 

1.  Ecologically relevant traits 
2.  Trade-offs between these traits 
3.  Mechanistic models of population 

interactions 
4.  Fitness 
5.  Source of novel phenotypes 
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1)	  Ecologically	  relevant	  traits	  

Litchman and Klausmeier 2008 
Annual Rev. Ecol. Evol. Syst.  



Nutrient	  U9liza9on	  Traits	  

nutrient 
uptake 

growth 

Traits:  
 µ∞, growth rate at infinite quota 
 Qmin , minimum internal nutrient content 
 Qmax , maximum internal nutrient content 
 Vmax, maximum uptake rate of nutrient 
 K, half-saturation constant for nutrient uptake 
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Light	  U9liza9on	  Traits	  

Traits:  
 µmax, maximum growth rate 
 α , initial slope of the growth-irradiance curve 
 Iopt , growth saturation irradiance 
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2) Trade-offs between traits 

•  Allocation of finite resources / time 
•  Physical / genetic constraints 



3) Mechanistic models of 
population interactions 

•  Spatial / temporal heterogeneity 
•  Age / size structure 
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4) Fitness 

Growth rate of a rare species trying to invade 
a resident community (dominant eigenvalue, 
Floquet exponent, Lyapunov exponent) 
 
(Metz, Nisbet & Geritz 1992) 
 



5) Source of novel phenotypes 

•  Standing genetic variation 
•  Rare mutation 
•  Immigration 
•  Everything is everywhere 



Linking traits and community 
structure 

•  Fitness = growth rate = g(E,traits) 

•  Frequency-independent: maximize growth 
rate 

Environment	  (E)	   Growth	  rate	  (g)	  



Linking traits and community 
structure 

•  Interspecific interactions: species affect 
environment too: E(traits, abundances) 

•  Frequency-dependent 

Environment	  (E)	   Growth	  rate	  (g)	  



Minimize break-even nutrient concentration,  
R* (Tilman 1982) 
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µ minQ m
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R* decreases (competitive ability increases) when 
 
µ∞ (growth at max Q) 
Vmax (max uptake rate) 

• K (half-saturation constant) 
• Qmin (min quota) 
• m (mortality)  

Simplest case: resource 
competition 



Ex 1: Optimal N:P Ratios 

Redfield# (Klausmeier et al., 2004, Nature 429: 171-174) 



Ex 1: Optimal N:P Ratios 

•  Cell is made up of different types of machinery and 
factory walls 
–  Uptake machinery, Ru per carbon 
–  Assembly machinery, Ra per carbon 

•  Each component has its own N:P stoichiometry (Nx, Px) 
•  Uptake machinery should be N-rich (proteins/

chloroplasts) 
•  Assembly machinery should be N- and P-rich 

(ribosomes)[Growth Rate Hypothesis] 
•  Trade-off between uptake and assembly machinery  



µ m
ax
#

I* !

N
* #

P*
!

Ra! Ra!

Exponen9al	  growth	   Light-‐limita9on	  

N-‐limita9on	   P-‐limita9on	  

(Klausmeier et al., 2004, Nature 429: 171-174) 



Ex 1: Optimal N:P Ratios 

Redfield#µmax# I*! N*! P*!
(Klausmeier et al., 2004, Nature 429: 171-174) 



General	  case	  

(Geritz et al. 1998 Evol Ecol) 
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General case 
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growth#
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(Geritz et al. 1998, Evol. Ecol) 
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General case 

1	  Species	  ESS	  

(Geritz et al. 1998, Evol. Ecol) 

growth#
rate, g#

trait, x#

trait, x#

growth#
rate, g#



General	  case	  

Branching	  Point	  

(Geritz et al. 1998, Evol. Ecol) 

growth#
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General	  case	  

2	  Species	  ESS	  

Branching	  Point	  

(Geritz et al. 1998, Evol. Ecol) 
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Pairwise invasibility plots (PIPs) 

(Geritz et al. 1998, Evol. Ecol) 
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Eightfold classification 

(Geritz et al. 1998, Evol. Ecol) 



Eightfold classification 

(Geritz et al. 1998, Evol. Ecol) 

ESS	  

ESS	  ESS	  



Eightfold classification 

(Geritz et al. 1998, Evol. Ecol) 
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Related approaches 

ESS Maximum Approach 
(Brown, Vincent) 

Adaptive Dynamics 
(Geritz, Metz, Dieckmann, Law) 

Complex	  Adap,ve	  Systems	  	  
(Wirtz,	  Norberg	  et	  al.,	  Bruggeman)	  

Quan,ta,ve	  Gene,cs	  
(Lande,	  Abrams)	  

Monte	  Carlo	  Sampling	  
(Follows	  et	  al.)	  



The Big Questions 
•  How do community 

structure (diversity, 
species traits) and 
ecosystem functions 
depend on abiotic 
environmental 
parameters? 

•  How will ecosystems 
reorganize in the face 
of human impacts? 
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Ex 2: Diatom Size Evolution 

B Q R 

(Litchman et al, 2009 PNAS) 
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Exponential growth and equilibrium 
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ESS cell size in pulsed 
environment 
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Other aquatic examples 

•  Follows et al. 2007 Science – optimum 
temperature and irradiance in a global 
ocean model 

•  Bruggeman and Kooijman 2007 L&O – 
light vs nutrient competitive ability in a 
seasonal 1D water column 

•  Clark et al. 2013 L&O – cell size in a 
global ocean model 



 Trait-Based Approaches… 

•  Are agnostic on level of adaptation 
– Species sorting (community assembly) 
– Microevolution 
– Physiological / behavioral 

•  Offer new perspectives on 
– Neutral vs. niche 
– Species coexistence  



Robustness of Coexistence 
Mechanisms 
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(Geritz et al. 1998, Evol. Ecol) 
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Robustness of Coexistence 
Mechanisms 
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⇒ Ecological coexistence does not imply 
evolutionary coexistence! 

(Geritz et al. 1998, Evol. Ecol) 



Resource acquisition trade-off 

• 1&2 
  coexist 

R2 

R1 

sp. 1 
sp. 2 

(after Tilman 1982; Klausmeier et al. 2007) 



• 1.5 
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sp. 2 
sp. 1.5 

Resource acquisition trade-off 

(after Tilman 1982; Klausmeier et al. 2007) 



Competition–predator resistance 
trade-off 
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(after Leibold 1996) 



Competition–predator resistance 
trade-off 
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(after Leibold 1996) 
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⇒ Evolutionary coexistence may depend 
on trade-off shape 

Competition–predator resistance 
trade-off	  



Growth rate–competition trade-off 

•  At	  equilibrium,	  only	  one	  species	  survives	  
•  Trade-‐off:	  growth	  rate	  vs.	  equilibrium	  compe99ve	  
ability	  

R#
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Seasonal Forcing 

t!
0#

0# ΦT! T!

T – period#
Φ– growing proportion!



Growth rate–competition trade-off 

(Litchman	  &	  Klausmeier	  2001	  Am	  Nat)	  



Growth rate–competition trade-off 

(Kremer & Klausmeier in press J Theor Bio) 



Growth rate–competition trade-off 

Proportion growing season (Φ) 
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selection, and convergence stability holds, a branching point is
identified. Following the identification of a branching point (or a
LESS), a two species singular strategy can be located by solving for
the values of μ!res ¼ ðμres1; μres2Þ such that the fitness gradient,
∂gðμinv; μ!resÞ=∂μinv, simultaneously equals zero when μinv is eval-
uated at each element of μ!res. The stability of the resulting
singular strategy is determined as before (refer to Eq. 2.7) and
the process repeated until a global ESS state is determined. In this
way, for any environment (given f, T, or other parameters of
interest), we can solve for both the number of species capable of
arising and persisting stably through evolution and their asso-
ciated trait values (Geritz et al., 1998, 2004).

Note that care must be taken in these calculations to maintain μ
between μmin and μmax. The lower value of μ is effectively
constrained by mortality rate m. However, in many cases, evolu-
tion would drive the maximum value of μ above μmax despite the
corresponding cost of high K. When this happens, we hold the
species’ trait at μmax as if it had reached a singular strategy, even
if its fitness gradient was positive. In real biological systems,
maximum growth rates may be constrained by additional factors
such as metabolic tradeoffs, competitive abilities, predation, and
temperature, preventing runaway selection for unrealistically high
growth rates.

3. Slow evolution and coexistence using T-∞ approximation

3.1. Successional state dynamics (SSD) approximation and
motivation

Because the numerical evaluation of (2.1) is relatively costly, for
our initial results we use an approximation method termed
‘Successional state dynamics’ (SSD, see Klausmeier, 2010), to
arrive at analytically tractable expressions for population attrac-
tors (2.1) and invasion rates (2.4). This approach hinges on the
observation that as T-∞ in externally forced, piecewise, periodic
systems, the dynamics consist entirely of discrete states, in which
individual populations are either rare and exponentially increasing
or decreasing in abundance, or common and at constant abun-
dances. The transitions between these discrete states occur almost
instantaneously relative to the length of a period T. We can
determine the identity of these states as well as critical transition
times between states. For specifics refer to the example of
competition for a periodically available resource provided in detail
in (Klausmeier, 2010). While the assumption of infinitely long
periods may be initially disconcerting, it is often the case that
numerical results from finite period environments converge
rapidly on the SSD approximations as T increases (in our case,
the results are indistinguishable from T¼365). We first present
results using the SSD approach, and then investigate dynamics
given finite values of T, indicating where these findings converge.

3.2. Resource availability f and trait bifurcation diagram

We now turn to examining how the length of the good season,
governed by f, influences species coexistence and ESS trait values.
Fig. 3 shows a sequence of PIPs across a range of f values,
classified according to their stability (see Section 2.4 and Figs. 3
and A1A). This information can be condensed into a bifurcation
diagram covering a continuous range of f values, showing simul-
taneously the trait values of one and two species singular
strategies and categorizing the corresponding evolutionary
regimes (Figs. 4 and A1B). This result shows that at either low or
high values of f (near 0 or 1), only a single species can exist at the
ESS (with high or low maximum growth rates, respectively). For
intermediate values of f, two species coexistence is possible via

evolutionary branching. Flanking either side of this range of f
values are local but not global ESS (LESS) cases, where two species
coexistence is possible, but can be attained only through immigra-
tion or mutations of large effect, rather than by small mutations
(Fig. 4). These results are consistent with the findings of the
ecological model of (Litchman and Klausmeier, 2001), with fast
growing species dominating at low f, good competitors dominating
at high f, and both strategies coexisting under intermediate
resource availability. However, the range of values over which
coexistence is possible is significantly larger when species trait
values are optimized by evolution along our tradeoff, rather than
given by the specific fixed parameters of Litchman and Klausmeier
(2001). Additionally, we gain insight into the potential origin of
coexisting species, and when the two species community can arise
in situ through gradual evolutionary processes, or depends on a
source of variation stemming from immigration or large mutations.

3.3. Influence of tradeoff assumptions

Coexistence depends heavily on the assumed tradeoff between
maximum growth rate μ and half saturation constant K, the strength
of which is governed by parameter c (Fig. 2). We examine the sensi-
tivity of the preceding results to variation in this parameter (Fig. 5).
When c¼1, the relationship between μ and K is linear, and the lowest
value of Rn occurs at μmax (Fig. 2). As such, there is no competitive
advantage to having a lower maximum growth rate and coexistence
does not occur for any value of f. However, as c increases, coexis-
tence becomes possible and the width of the coexistence region
increases rapidly. As c increases further, the region of coexistence
shifts gradually from higher to lower values of f, where the resource
is available more briefly. Collectively these results illustrate another
potential role for evolution in moderating coexistence, to the extent
that tradeoffs may arise through evolutionary as well as physiological
constraints.

4. Slow evolution and coexistence under finite period
fluctuations

4.1. Evolutionary coexistence, length of the good season (f), and
period length (T)

Within aquatic environments, and across habitats, resources
can be more or less ephemeral and fluctuate on different time
scales (in other words, with periods of different lengths). Given the
diversity of possible environments, it is important to understand
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Fig. 4. Evolutionary equilibria and their stability as a function of f, the proportion
of a period over which growth is possible. The black line follows the location of the
one species singular strategy as ϕ changes. The stability of the singular strategy
transitions between global ESSs (solid line), local but not global ESSs (LESSs,
dashed), and branching points (dotted). Gray lines indicate the traits of the two-
species (dimorphic) ESS populations arising from LESSs or branching points.
Whenever the fast growing strategy is favored it takes on the value of μmax¼5.
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Fitness in a Spatially Variable 
Environment 
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Fig. 3. The biomass distribution of all resident species at the global ESS condition
corresponding to figure 2d

3 Results

Our main goal is to determine how community structure varies along envi-
ronmental gradients. We focus on several key parameters: Turbulent mixing
(D), Background attenuation (abg), depth (z), and nutrient concentration at
sediment layer (Rsed). In figures 4-7 we show the ESS community structure
along the parameter values, as well as the depth of the maximal biomass point
for each species, and the total biomass of each species

∫

0

−zb
Bi(z)dz.

3.1 Turbulent mixing (D)

Figure 4 shows the community structure along the water mixing. In the well
mixed case (high D values) where species are homogenized because of the high
turbulence there is one dominating species which is a good light competitor
(with its peak located at the water surface). As the mixing level is reduced, the
nutrient flux which depend on the water mixing declines and the dominating
species adapts its trait to increase the nutrient intake. At some point the
nutrient flux is too weak and the optimal peak location of the dominating
species moves down from the surface. The biomass of the dominating species
declines slowly until a point where enough light is penetrating the water and
another species which is a better competitor for light can invade the system,
peaking below the first one. As the mixing is further reduced the two species
diverge from each other both in both space and trait. As the water becomes
very poorly mixed, more species can be packed in between the original two,
but the total biomass in the whole water column, especially of the original
species, declines significantly.

8

we want to model. We then solve the system of coupled ODEs using VODE
(??).

Figure 2 shows the process described above for a specific set of parameters.
The first species evolves towards a trait with fitness that is a local minima
(branching point). The invader with maximal fitness (green dot) is added to
the system and we follow it again to steady state. We repeat the process until a
global ESS, where no species can invade, is found . The vertical distribution of
each species shows how species coexistence is enhanced by spatial segregation
with better light competitors deeper in the water column and better nutrient
competitors shallower (figure 3).

Finally, we are interested in the change of the global ESS community along key
environmental parameters. This is achieved by slowly varying the parameter
values, while using the solution obtained in the previous value. As the param-
eter value change, the ESS community fitness landscape gradually changes
as well. This can lead to addition of invading species, or removal of resident
species that went extinct from the resident species pool.
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Fig. 2. The process of reaching the global ESS condition. We start with 1 species and
let evolve to steady state of biomass and trait. We then map the fitness landscape for
all possible invaders under the environmental conditions set by the resident species
(marked by a red dot) (a). We find the invader with the highest fitness (marked
by a green dot), add it to the resident species pool and let the species and traits
evolve again to steady state (b). We continue this process (c) until reaching a global
ESS condition where no invaders with positive fitness exist (d). The colored arrows
correspond to the matching biomass distribution in Fig. 3
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gradually disappear because of lack of light. At last, when attenuation is very
high, one species remains, residing at the surface of the water column.
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Fig. 5. Community distribution as a function of the background water attenuation,
abg.

3.3 Water column depth (zb)

Figure 6 shows the community structure along the water column depth. For
a very shallow water column one species with intermediate trait reside near
the bottom. When depth is increased, the ESS trait shift towards better light
consumption while the biomass remains concentrated near the bottom. At a
certain point another extreme species - strong nutrient competitor - appears
at the top. Similar to the process of the light attenuation, more intermediate
species are added as depth increase, until a certain point of maximal number
of species. After this point (zb ∼ 48 meters) species start to disappear and
the total biomass declines. The maximal depth of the peak biomass does not

10
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ESS community is composed of one dominating strong light competitor that
is concentrated on the water surface.
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Fig. 7. Community distribution as a function of the sediment layer richness, Rsed.

4 Discussion

In our approach community structure emerges from a continuum of strate-
gies. Our results show how key environmental factors affect the community
structure. It is interesting to note that for all parameters, the species traits
(χ) and maximal biomass depth (z) form qualitatively reflected images along
the parameter value, indicating a strong relation between trait and optimal
depth. The results show two main trends of the community diversity: One
shows increasing diversity along a parameter gradient (D, Rsed) and the other
a unimodal diversity along the parameter (zb, abg). The unimodal patterns
resemble predictions of the intermediate disturbance hypothesis (IDH) (?).
However, we suspect that the low number of species at both extreme values
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in our seasonally forced environment. Evolution enables species to
adapt over the course of a period, rather than maintaining
constant trait values. Consequently, trait values typically increase
at the beginning of a period to allow rapid growth when the
resource is plentiful, then decrease again as the resource becomes
limiting. Despite this variation in traits on a short time scale, two
species can still exhibit distinct trait attractors, consistent with
multispecies coexistence (Fig. 8A and B). However, this coexistence
collapses when s is high (Fig. 8C and D); despite having drama-
tically different initial trait values, two species rapidly converge on
the same trait dynamics. Essentially, s becomes so large that any
species is able to rapidly approach the trait values optimizing its
fitness over the course of the resource fluctuations and no niche
space remains for ecologically distinct species. Once competitively

neutral, the addition of any demographic stochasticity would lead
to the eventual exclusion of one species or the other. The collapse
of coexistence agrees with our previous finding regarding the limit
of fast evolution and slow ecology (Section 5.1 and Fig. 7).

We can map out how coexistence and evolutionary regimes
change with increasing s (and across variation in f). For non-zero
values of s, species’ trait values vary through time, rendering
typical Adaptive Dynamics approaches that assume constant trait
values inapplicable. Population and trait attractors (denoted N̂iðtÞ
and μ̂iðtÞ , and consisting of their dynamics over the course of one
period, T) must be determined numerically, solving the system of
equations described by (2.1) and (5.1) until both |Ni(t)–Ni(t+T)|oε
and |μi(t)–μi(t+T)|oε for small ε and all i species under considera-
tion. We then proceed to identify singular cycles, branching cycles,
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Evolutionary ecology in space 

(Case and Taper 2000) 



Evolutionary ecology in space 

A) Evolution only B) Ecology only C) Coupled ecology & evolution
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Scaling Up to Complex 
Communities 

1.  Food webs 
2.  Species abundance distributions 



 

Traits in a Food Web Perspective 
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Species	  Abundance	  Distribu9ons	  
(SADs)	  

•  “Vector	  of	  the	  abundances	  of	  all	  species	  
present	  in	  a	  community”	  (unlabeled)	  

•  Intermediate-‐complexity	  descrip9on	  of	  
diversity	  

(McGill	  et	  al.	  2007	  Eco	  Let)	  



Three	  Ways	  to	  Look	  at	  SADs	  

I N T R O D U C T I O N

What is an SAD?

A species abundance distribution (SAD) is a description of
the abundance (number of individuals observed) for each
different species encountered within a community. As such,
it is one of the most basic descriptions of an ecological
community. When plotted as a histogram of number
(or percent) of species on the y-axis vs. abundance on an
arithmetic x-axis, the classic hyperbolic, !lazy J-curve" or
!hollow curve" is produced, indicating a few very abundant
species and many rare species (Fig. 1a). In this form, the law
appears to be universal; we know of no multispecies
community, ranging from the marine benthos to the
Amazonian rainforest, that violates it. When plotted in
other fashions, such as log-transforming the abundances
(Fig. 1b), more variability in shape occurs, giving rise to
considerable debate about the exact nature of SADs.
Nevertheless, the hollow-curve SAD on an arithmetic scale
is one of ecology"s true universal laws.

To be precise, we define an SAD as a vector of the
abundances of all species present in a community. Often,
the SAD is presented visually in a rank-abundance diagram
(RAD; Fig. 1c) where log-abundance is plotted on the y-axis
vs. rank on the x-axis. This plot contains exactly as much
information as the vector of abundances. In contrast,
histograms (Fig. 1a,b) involve binning and thus a loss of
information. In our definition, the term !community" is
vague (Fauth et al. 1996), and we do not choose to give a
precise definition here, but the choice becomes important
when we study the role of scale and sample size in SADs
(discussed later). The two most salient features of the SAD
are the fact that the species are not !labelled" by having a
species identity attached to the abundance and that zero
abundances are omitted. This loss of labels allows for
comparison of communities that have no species in
common, for example, a freshwater diatom community
and a tropical tree community. At the same time, SADs
enable nuanced questions and comparisons such as asking
which community has a higher proportion of rare species

Figure 1 Different ways to plot SADs. Abundance data for trees collected by Whittaker in the Siskiyou Mountains (Whittaker 1960) is
replotted here in three different formats. (a) A simple histogram of number of species vs. abundance on an arithmetic scale. A smoothed line
is added to highlight the overall shape. (b) A histogram with abundance on a log-scale. Note the traditional format is to use log2. (c) A rank-
abundance diagram (sometimes called a RAD). Log abundance (here log10 to make the reading of values easier) is plotted against the rank
(1 = highest abundance out to S = number of species for the lowest abundance). (d) An empirical cumulative distribution function (ECDF)
with a NLS logistic line fit through the data. Note that both the x- and y- axes are scaled into percentages. (e) A rank-abundance plot for data
from three different elevational bands showing different shapes observed. (f) The same three elevational bands now plotted as an ECDF.
Same colour ⁄ symbol legend as Fig. 1e.
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A species abundance distribution (SAD) is a description of
the abundance (number of individuals observed) for each
different species encountered within a community. As such,
it is one of the most basic descriptions of an ecological
community. When plotted as a histogram of number
(or percent) of species on the y-axis vs. abundance on an
arithmetic x-axis, the classic hyperbolic, !lazy J-curve" or
!hollow curve" is produced, indicating a few very abundant
species and many rare species (Fig. 1a). In this form, the law
appears to be universal; we know of no multispecies
community, ranging from the marine benthos to the
Amazonian rainforest, that violates it. When plotted in
other fashions, such as log-transforming the abundances
(Fig. 1b), more variability in shape occurs, giving rise to
considerable debate about the exact nature of SADs.
Nevertheless, the hollow-curve SAD on an arithmetic scale
is one of ecology"s true universal laws.

To be precise, we define an SAD as a vector of the
abundances of all species present in a community. Often,
the SAD is presented visually in a rank-abundance diagram
(RAD; Fig. 1c) where log-abundance is plotted on the y-axis
vs. rank on the x-axis. This plot contains exactly as much
information as the vector of abundances. In contrast,
histograms (Fig. 1a,b) involve binning and thus a loss of
information. In our definition, the term !community" is
vague (Fauth et al. 1996), and we do not choose to give a
precise definition here, but the choice becomes important
when we study the role of scale and sample size in SADs
(discussed later). The two most salient features of the SAD
are the fact that the species are not !labelled" by having a
species identity attached to the abundance and that zero
abundances are omitted. This loss of labels allows for
comparison of communities that have no species in
common, for example, a freshwater diatom community
and a tropical tree community. At the same time, SADs
enable nuanced questions and comparisons such as asking
which community has a higher proportion of rare species

Figure 1 Different ways to plot SADs. Abundance data for trees collected by Whittaker in the Siskiyou Mountains (Whittaker 1960) is
replotted here in three different formats. (a) A simple histogram of number of species vs. abundance on an arithmetic scale. A smoothed line
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Table 2 Dozens of theories attempting to explain (and in most cases provide a mechanism to) the hollow curve SAD exist. This table briefly
summarizes them and organizes them into related families. For a similar analysis performed a few years earlier see Marquet et al. (2003)

Family SAD Comments

Purely statistical 1. Logseries Fisher et al. (1943) used a gamma distribution to describe the underlying
!true" abundance for purely empirical reasons, and then using the
gamma random variable as the parameter of a Poisson distribution
to describe the discrete samples that occur in finite real world
samples gives a negative binomial distribution (which he then truncates
the 0-abundance category and takes a limit). Boswell & Patil (1971)
later showed that many other arguments can also produce the logseries.

2. Negative binomial Brian (1953) is one of the few people to use the seemingly obvious
negative binomial (usually 0-truncated)

3. Gamma A variety of population dynamic models lead to a gamma distribution
(Dennis & Patil 1984; Engen & Lande 1996a; Diserud & Engen 2000),
which seems to fit some data well (Plotkin & Muller-Landau 2002)

4. Gamma-binomial or
Gambin

Compounding the gamma with a binomial sampling process (cf. the
Poisson compounded with the gamma to produce the logseries) gives
a one parameter distribution where the single parameter seems to be
a good measure of the environmental complexity (Ugland et al. 2007)

Purely statistical
(lognormal subfamily)

5. Lognormal I – Preston"s
discrete, binned
approximation

A discretized version of the lognormal (Preston 1948; Hubbell 2001) is
probably no longer justified given modern computing power

6. Lognormal II – true continuos
lognormal

The original lognormal (Galton 1879; McAlister 1879; Evans et al. 1993)
which has received extensive application to ecology (Gray 1979;
Dennis & Patil 1984, 1988; McGill 2003c)

7. Lognormal III – left truncated
(veiled) lognormal

As in number 6, but with left truncation (Cohen 1949) to match Preston"s
idea of unveiling. Has rarely been used in practice (and which in
fact usually does not fit the data as well as the untruncated version
McGill 2003a)

8. Lognormal IV – Poisson
lognormal

Mixes the lognormal with the Poisson (cf. the logseries which mixes the
gamma and the Poisson; Bulmer 1974; Kempton & Taylor 1974).
Requires an iterative likelihood method on a computer to fit which is
often not available in standard statistical packages (Yin et al. 2005), and
is sometimes confusingly called a truncated lognormal (Kempton &
Taylor 1974; Connolly et al. 2005).

9. Lognormal V – Delta
lognormal

A mixture of the continuous lognormal and a Bernoulli variable to
allow zeros to occur with a probability P (Dennis & Patil 1984, 1988)

Branching process 10. Generalized Yule Yule (1924) applied what is now known as the Galton-Watson branching
process to model the number of species within a genus (which has a
distribution similar to individuals within species). Kendall (1948b) and
Simon (1955) generalized this work and used it as a model of population
dynamics and abundance. Chu & Adami (1999) analysed this again in an
ecological context, and Nee (2003) showed that this distribution provides
extremely good fits to SADs.

11. Zipf-Mandelbrot Using a different type of branching process known as a scaling (or fractal)
tree, Mandelbrot (1965) generalized Zipf’s (1949) Law in linguistics to
produce the Zipf-Mandelbrot distribution. This has been applied to SADs
by several authors (Frontier 1985; Wilson 1991; Frontier 1994,
1985; Wilson et al. 1996).

12. Fractal branching
model

Mouillot et al. (2000) introduce a fractal branching (tree-like) extension
to the niche pre-emption model (#19)

Population dynamics 13. Lotka-Volterra The generalized Lotka-Voltera models with random parameters can
produce a hollow curve (Lewontin et al. 1978; Wilson et al. 2003).

14. Hughes A detailed single species population dynamic model with random
parameters (Hughes 1986) can produce hollow curves
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Table 2 (continued )

Family SAD Comments

15. Stochastic single
species

Population dynamic models with stochastic noise can produce hollow curve
SADs (Tuljapurkar 1990; Engen & Lande 1996a; Diserud & Engen 2000;
Engen et al. 2002). Most of these models produce either a lognormal or a
gamma distribution under quite general conditions on the population
dynamics (Dennis & Patil 1984, 1988)

16. Logistic-J Dewdney (2000) has developed a simulation of random encounters and
random transfer of resources that produces what he calls the
logistic-J SAD.

Population dynamics
(Neutral model
subfamily)

17. Neutral The ability of neutral models (with populations performing a coupled
version of a random walk or drift) to produce SADs has excited much
attention (Chave 2004; Alonso et al. 2006; McGill et al. 2006b). Bell (2000,
2001, 2003) and Hubbell (1979, 2001) have pushed this idea extensively
recently, but it was shown much earlier by Caswell (1976) and Watterson
(Watterson 1974) that with or without zero-sum dynamics neutral drift
produces realistic SADs (Etienne et al. 2007a).

18. Coalescent neutral
theory

A coalescent version of neutral theory (Etienne & Olff 2004b; Etienne
2005) has shown that neutral population dynamics have some similarities
to the branching processes described above.

Niche partitioning 19. Geometric or niche
preemption

Motomura (1932) used a model where each species takes a constant fraction
of the remaining resources.

20. Broken stick MacArthur (1957, 1960) developed the opposite model where the niche space is
broken up simultaneously and with random fractions and is known as the broken
stick model. This model has the distinction of being one of the very few SAD
models ever developed to have been strongly rejected by its inventor
(MacArthur 1966; !Let us hope these comments do not draw additional attention
to what is now an obsolete approach to community ecology, which should be
allowed to die a natural death."). Cohen (1968) showed that the same math of the
broken stick could be produced by an exactly opposite set of biological
assumptions from those of MacArthur.

21. Sugihara Sugihara (1980) crossed Motomura"s (1932) and MacArthur"s (1957) models
by breaking the stick randomly but in sequential fashion. Nee et al. (1991)
showed this produced realistic left skew.

22. Random fraction Tokeshi (1993, 1996) has since developed a variety of niche apportionment
models with various combinations of models 19–21.

23. Spatial stick
breaking

Marquet et al. (2003) explored the consequences of adding spatial structure
to niche breakage models.

Spatial distribution
of individuals

24. Continuum Several authors (Gauch & Whittaker 1972; Hengeveld et al. 1979) showed
that the roughly Gaussian bell-curved shape of abundance across a
gradient or species range produces hollow curve SADs in local
communities since at any one point most species are found in the tail
of their bell-curve across species while a few species are found in the peak
of their bell-curve (thereby flipping the emphasis from local interactions
between species to regional spatial processes of individual species). McGill
& Collins (2003) expanded this theory and provided empirical evidence
that this mechanism is in fact explaining as much as 87% of the variation
in local abundances.

25. Fractal
distribution

Harte et al. (1999) showed that starting only with an assumption that the
distributions of individuals within a species were self-similar across spatial
scale could lead to a realistic SAD. Although the initial formulation was
found to not have a good fit to the data (Green et al. 2003)

26. Multifractal Borda-de-Agua et al. (2002) extend the fractal distribution model to cover
multifractals (fractal dimension changes with scale)

27. HEAP A newer model, also based on a different description of the distribution of
individuals across space has been developed (Harte et al. 2005).
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Some	  SAD	  Theories	  

•  Purely	  sta9s9cal	  
– Log	  series	  (Fisher)	  
– Lognormal	  (Preston)	  

•  Niche	  par99oning	  
– Broken	  s9ck	  (MacArthur,	  Sugihara)	  

•  Popula9on	  dynamics	  
– Neutral	  theory	  (Hubbell)	  

(McGill	  et	  al.	  2007	  Eco	  Let)	  
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Trait-‐Based	  Community	  Ecology	  in	  a	  
Metacommunity	  Context	  
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Model	  1:	  Lotka-‐Volterra	  Compe99on	  
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Model	  2:	  Resource	  Compe99on	  
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Conclusions	  
•  Selec9on	  +	  immigra9on	  yields	  many	  realis9c	  and	  
complex	  SADs	  

•  Increased	  immigra9on	  supports	  more	  rare	  
species	  

•  “Classic	  SADs”	  are	  not	  the	  only	  possibili9es	  
•  Mul9ple	  factors	  (local	  and	  regional)	  determine	  a	  
species’	  abundance	  

•  Complex	  pa[erns	  may	  be	  hard	  to	  detect	  in	  real	  
communi9es	  

•  Ofen	  bimodal:	  core	  /	  satellite	  species	  



“Because	  the	  ecosystem	  structure	  and	  
func9on	  are,	  by	  design,	  emergent	  and	  not	  
9ghtly	  prescribed,	  this	  modeling	  approach	  is	  
ideally	  suited	  for	  studies	  of	  the	  rela9ons	  
between	  marine	  ecosystems,	  evolu9on,	  
biogeochemical	  cycles,	  and	  past	  and	  future	  
climate	  change.”	  
	  
–	  Follows	  et	  al.	  2007	  
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