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1. Introduction

Ecology was probably the first area of biology where quantitative models
were constructed. These early models were formulated at the population
level, frequently as differential equations which were practically the only
tool available to solve them at the time.

The advent of electronic computers led to a huge increase in the variety
and complexity of models which could be studied, most naturally
formulated at the individual level. However the analytic study of ecological
models is still very much influenced by the traditional approach.

In this lecture I’ll discuss how individual-based models (IBMs) can be
studied not only numerically, but analytically as well.

I’ll also argue that they are simpler to construct, more intuitive and
describe effects that population-level models (PLMs) miss.
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Three approaches to ecological modelling

Population level models

PLMs are typically formulated as ordinary differential equations for the
fraction of the population that is of a certain kind. For example, Levins’
original metapopulation model is written as

dQ

dt
= cQ(1− Q)− eQ,

where Q is the fraction of patches which are occupied and c and e are
effective parameters.

This is a phenomenological equation, i.e. written down consistently, but
not derived from a more basic model. The variables, such as Q, are
continuous—implicitly assuming an infinite population size—and thus the
results are deterministic (non-random).

The advantage of this approach is that the well-developed mathematics of
dynamical systems is applicable. This is still considered by many to be the
dominant methodology, with many textbooks available.
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If one starts with this approach then the question of how to include
stochastic effects arises. Some authors discretise the equations while
others add stochastic (noise) terms on to the equations. Both of these
approaches are ill-defined in general.

Agent based models

Agent based models have a finite number of individuals in the system,
each typically having many attributes or degrees of freedom. These are
frequently defined in terms of computer algorithms ready for simulation.

For instance, individuals in the model may have an age, a sex, a location,
and so on. The term IBM is occasionally used to describe such models,
and more particularly to mean computer-based ecological models where
individuals have many attributes, but we will not use this terminology here.

The advantages of models of this type are the potentially unlimited
amounts of detail that can be included and the ease of programming. The
main disadvantage is that algorithmic approach can only produce numerical
results—in general they are too complex for mathematical analysis.
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Individual based models

IBMs are also composed of a finite number of individuals, but typically
with a smaller number of attributes. The rules for the time evolution of
the individuals within the system are formulated probabilistically, usually as
a Markov process.

State variables are therefore discrete instead of continuous and by
definition the model is stochastic. In an IBM version of the metapopulation
model above, n would be the number of patches and the dynamics of
colonisation and extinction of patches are random events that depend on n

Usually the population is divided up into a small number of classes,
reducing the degrees of freedom, thus all members of the same class are
indistinguishable.

The probabilistic formulation of IBMs means they can be simulated exactly
with Monte Carlo techniques, but most importantly they can be analysed
analytically via the master equation. The corresponding PLM to a given
IBM can also be analytically derived.
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2. Creating stochastic models

Beginning with IBMs, and deducing PLMs from them, is the approach
taken in many of the physical sciences. In chemistry, for example, reaction
kinetics at the molecular level yield rate equations at the macroscale and
in physics, statistical mechanical models at the microscale lead to a
thermodynamical description at the macroscale.

In ecological IBMs, random events—for example: birth, death and
predation—at the level of individuals (the microscale) give rise to
macroscopic dynamics for large populations of individuals.

In the limit of an infinite population these dynamics become deterministic
and can be described by a set of ordinary differential equations: a PLM.

As we will discuss later, when the population is large but still finite, these
dynamics are often still strongly stochastic. Before we do this, we first
discuss the construction of IBMs and some methods of analysis.
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Suppose we wish to describe an ecological system that contains m
different species and the only way we are going to label individuals is as
belonging to a given species.

If the population size is assumed to be finite, equal to N, then the state of
the system is given by a vector of integers n = (n1, . . . , nm), where ni is
the number of individuals of species i at that time.

This could also be the number of individuals of species i per unit area, or
some other measure.

Since the basic idea of model specification can be illustrated on a system
with just one species, let us focus on a system with n identical individuals
of type A.

Suppose also that the only processes are death and (asexual) birth. We
represent these as

A
d−→ E and A + E

b−→ A + A.
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The first equation indicates that an individual of type A dies at a rate d to
give a vacancy (E for ‘empty’) and the second, that if there is a vacancy,
another individual of the same type is born at a rate b.

The rate at which the number of individuals reduces from n to (n − 1) is
then

T (n − 1|n) = dn,

and the rate at which it increases from n to (n + 1) is

T (n + 1|n) = bn
(N − n)

N
= bn

(
1− n

N

)
.

This last result assumes a well-mixed population and is proportional to the
probability of an individual and a vacancy existing in the system. These
are the fundamental ingredients that underpin the dynamics.

We should emphasise that these rates depend on N and thus so do the
dynamics of the model. This is not true of a PLM. We now discuss a
number of examples of IBMs of increasing complexity.
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Three examples of ecological IBMs. (a) shows a simple metapopulation
model. (b) shows a neutral island chain. (c) the Levin-Segal model, which
describes the explicitly spatial plankton-herbivore dynamics.
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Examples of ecological IBMs

An advantage of IBMs is that specifying them is simple and they are
straightforward to biologically motivate, with additional features easily
incorporated. Here we give a number of examples, three of which are
illustrated in the figure.

Neutral models

The ‘classic’ neutral theory, introduced by Hubbell consists of a local
community with birth/death processes of the Moran type and immigration
from a metacommunity, which acts as a well-mixed source pool of
potential immigrants.

Since all individuals are assumed to have the same birth and death rates,
we may fix our attention on one species, A, and denote all other species as
B. Then the transitions are:

(i) Death/Birth: A + B
(1−m)−→ A + A; A + B

(1−m)−→ B + B

(ii) Immigration: A
m−→ B; B

m−→ A
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Here the rates do not include the combinatoric factor that gives the
probability of choosing individuals of the desired species to interact.

The quantity m is the probability that the replacement of an individual is
due to an immigration event, rather than by a birth/death event.

The probability of a particular immigrant being chosen is given by the
relative abundance of that particular species in the metacommunity, which
can also be described as an IBM with birth/death and speciation.

This model is only implicitly spatial, but it can be extended in many ways,
for example by making it explicitly spatial, incorporating a chain of islands,
or a network structure.

Metapopulation models

Metapopulations are sets of fragmented local populations connected by
migration.

At the simplest level of description the patches can be thought of as being
either occupied or unoccupied.
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If A labels the occupied patches and E the unoccupied ones, then the
possible events are:

(i) Colonization: A + E
c−→ A + A

(ii) Extinction: A
e−→ E

(iii) Migration: E
m−→ A

This leads to a simple one-dimensional master equation, where the state
variable is the number of occupied patches. The same transition scheme
applies to many models such as logistic growth.

Again this simple model has been elaborated on, for instance by making
the number of colonisable patches into a dynamic variable.

Predator-prey model

The IBM consists of n individuals of species A (the predators) and m
individuals of species B (the prey)

The processes are taken to be

BE
b−→ BB (birth)
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AB
p1−→ AA AB

p2−→ AE (predation)

A
d1−→ E B

d2−→ E (death)

From these we can use combinatoric arguments to construct the transition
rates

T (n − 1,m|n,m) = d1 n

T (n,m + 1|n,m) = 2b
(m
N

)
(N − n −m)

T (n,m − 1|n,m) = 2p2
( n

N

)
m + d2m

T (n + 1,m − 1|n,m) = 2p1
( n

N

)
m

The introduction of spatial variation introduces no new points of principle
in the modelling procedure, although the analysis typically becomes more
complex.
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3. Analysis of stochastic models

Once a model has been specified, the complete stochastic dynamics are
encoded analytically by the master equation, or individual realisations can
be obtained by Monte Carlo simulation, which outputs a stochastic time
series.

These are the two main ways of investigating and solving these models
(that is, obtaining a complete description of the dynamics).

The stochastic simulation algorithm (SSA) due to Gillespie provides a
method for the exact simulation of a master equation. This type of
simulation is the usual way of investigating these models, mainly because
of its simplicity to program.

However, another important point is that the SSA and master equation
are both derived from the same underlying Markovian assumptions, so that
there is an exact correspondence between the two.
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In general, simulations provide individual realisations of a stochastic
process.

The master equation (also known as Kolmogorov’s forward equation)
describes analytically the temporal evolution of the probability density of
being in a particular state n, thus encoding the full stochastic dynamics.

If the master equation could be solved (for the probability density) then
one would have a complete description of the properties and the dynamics
of the stochastic system.

However, it cannot be solved analytically for most cases of interest, and so
a number of approximation methods have been developed.

One calculation that is straightforward and can always be carried out is to
determine the macroscopic behaviour from the master equation, which is
the N →∞ limit, and which yields the PLM corresponding to the original
IBM.
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Emergence of macroscopic behaviour. The number of occupied patches for
the metapopulation model for (a) N = 100, and (b) N = 1500 carrying
capacity. The red dashed lines shows the deterministic result and the blue
lines are from stochastic simulation.
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The master equation and the emergence of macroscopic dynamics

The transition rates T (n + 1|n) and T (n − 1|n) define the model. From
them the probability of finding n individuals in the system at time t,
P(n, t) can be calculated from the equation,

dP(n, t)

dt
= [T (n|n + 1)P(n + 1, t) + T (n|n − 1)P(n − 1, t)]

− [T (n − 1|n)P(n, t) + T (n + 1|n)P(n, t)] .

This is the equation that governs the dynamics of the system. It is the
equation for a Markov chain in continuous time, and is called the master
equation.

Although we have only discussed the case of a single species, all the
formalism naturally generalises. We can replace n by n everywhere in the
master equation where n is a vector with components which can represent
any set of species in a large collection of spatial patches and having any
number of other attributes.
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The master equation contains far more information than the usual
differential equations written down phenomenologically in terms of the
population density.

The latter can be found simply taking the average of n/N; all the detail of
the stochastic fluctuations is lost. Doing this for the metapopulation
model described above gives the well-known logistic equation.

In the deterministic description the probability distribution, P(n, t) is a
spike at n = 〈n〉. To go beyond this we could simply replace the spike by a
Gaussian.

The system would now be stochastic, being described by a probability
distribution function, although of the simplest kind. The width of the
Gaussian would be expected to scale like 1/

√
N, and so we would

effectively be writing
n

N
= x +

ξ√
N
,

where x = 〈n〉/N and ξ is a stochastic variable.
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This is the content of the van Kampen system-size expansion. It turns out
to be an excellent approximation (far better than might naively be
expected) away from boundaries.

Furthermore, since Gaussian probability distributions are derived from
linear stochastic differential equations, the whole theory is linear and so
can be treated exactly, even though the underlying stochastic processes
may be highly non-linear.

For most interesting applications we need more than one degree of
freedom, but the whole theory generalises in this case to a set of
stochastic differential equations for ξi :

dξi
dt

=
∑
j

αijξj(t) + ηi (t),

where ηi (t) is a Gaussian white noise with zero mean, which is the only
remnant of the demographic stochasticity of the system.

It has a correlation function given by a matrix βij . So the whole theory is
given by two matrices αij and βij which can be systematically calculated
from the transition rates which define the model.
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Population level descriptions follow from individual level descriptions

Far more insight can be found by analytically deriving the corresponding
PLM—a set of differential equations—from the IBM in the limit of infinite
N, than postulating it on phenomenological grounds.

It is also helpful in writing down a PLM when the ecology of the system is
complicated. In general it is easier to consider the events that define a
system, write down an IBM, and then derive the corresponding PLM.

Unfortunately, often this procedure is reversed: a well-studied PLM is
discretised, interpreted as an IBM, and then simulated to investigate
various stochastic effects.

This is exactly the wrong way round: in general there will be many IBMs
(sometimes infinitely many) giving a particular PLM, and so the PLM
should always be derived from the IBM.

Many IBMs give the same PLM because IBMs define a stochastic process
and PLMs are equations for the averages of this process, but many
stochastic processes have the same averages.
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4. Some applications

The modelling approach we have described has been applied to a number
of problems over the last few years, and there is a clear trend towards the
increasing use of this methodology.

For example, in the case of the neutral model discussed earlier, the
quantity that has been studied most intensively is the species abundance
distribution.

This is a plot of the number of species with a given number of individuals
in a local community. It can be calculated exactly in the classic model
starting from the master equation, and fits well with empirical data.

We will now discuss a number of other applications. For simplicity, we will
restrict ourselves to cases where the van Kampen system-size expansion
(also known as the linear noise approximation) is applicable.
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Quasi-cycles

A common feature of some IBMs (with two or more degrees of freedom) is
the ability of the demographic stochasticity to excite macroscopic scale
coherent oscillations, known as quasi-cycles.

A pre-requisite for quasi-cycles to occur in a given IBM is that there is a
stable fixed point in the corresponding PLM that is approached in an
oscillatory manner.

Expressed mathematically, this means that the stability matrix at this fixed
point must have at least one pair of complex eigenvalues.

However while the oscillations in the deterministic system are damped, and
so die away, in the full (stochastic) system the demographic stochasticity
acts as a forcing term and sustains the oscillations.
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A physical analogy is a pendulum that is lightly damped, so eventually any
oscillations will die away. If however it is randomly bombarded by weak
white noise, these oscillations will be sustained.

In addition the amplitude of these oscillations will be much bigger than
might naively be expected, because in amongst all the frequencies
contained in the white noise will be one that corresponds to the natural
frequency of the pendulum.

This resonance effect has been called stochastic amplification.

Quasi-cycles differ from limit-cycles in that they are a stochastic
phenomena, and provide a simple robust mechanism that generates cyclic
behaviour without the need for additional complexities, as are often
assumed, to generate cyclic behaviour in deterministic PLMs.

One of the most powerful tools for analysing such oscillations is the power
spectrum. This shows how the different frequencies that make up the
time-series are distributed.
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Quasi-cycles (a), and corresponding power spectrum (b). Two stochastic
realisations of an SIR model are shown in (a) along with corresponding
deterministic result (red dashed line). The cycles are maintained in the
stochastic realisations, but can go out of phase.

Alan McKane (Manchester) From the microscale to the macroscale Brest, August 20, 2013 25 / 32



The power spectrum

Quasi-cycles are stochastic in origin, and so do not have a single period,
but a distribution of periods centred about an average value. This,
together with the fluctuations in the amplitude of the cycles, mean that
when the time series from a large number of realisations are averaged over,
they average out to zero.

Yet a single realisation corresponds to what will be seen in an experiment,
and so some averaging mechanism is needed which will not wipe out the
cycles. The simplest way to achieve this is to take the Fourier transform of
the time series:

ξ̃i (ω) =

∫ ∞
−∞

ξi (t)e−iωtdt

The frequencies centred around that corresponding to the average period
will have the largest magnitude, and so taking the modulus squared of the
Fourier transform and then averaging: 〈|ξ̃i (ω)|2〉, should give a smooth
function spread about the characteristic frequency of the system.
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This is the power spectrum of the fluctuations. The spread of the power
spectrum will tell us how coherent the fluctuations are. If they were
deterministic and sinusoidal, the power spectrum would be a spike.

The height of the peaks of the power spectra (reflecting the amplitude of
the oscillations) are much larger than might be expected due to a
resonance effect: all frequencies are present in the white noise and this
resonates with the characteristic frequency of the system.

This characteristic frequency is not the same as the frequency of the decay
of perturbations to the deterministic system. The latter is given by |Imλ|,
where λ is a complex eigenvalue of the Jacobian of fluctuations about the
stationary state.

Instead the peak of the power spectrum is approximately at√
(Imλ)2 − (Reλ)2, and the precise value also depends on the βij .

The connection of quasi-cycles with limit cycles, which are the
conventional way of describing oscillations in nonlinear dynamical systems
has been clarified. In addition there can be quasi-cycles about limit cycles.
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Spatial patterns

In 1952 Turing predicted that systems which consisted of agents of at least
two different species which reacted together and spatially diffused could,
under certain circumstances, give rise to patterns, now known as Turing
patterns.

However just as demographic stochasticity leads to stochastic oscillations
where a deterministic analysis finds only static behaviour, it also leads to
stochastic Turing patterns in spatial systems, where reaction-diffusion
equations would indicate that none should exist.

This has been shown in a variety of systems, moreover the range of
parameters for which stochastic Turing patterns exist is usually much
larger than for conventional Turing patterns, which have restrictions such
as the diffusion constants of the two species being at least an order of
magnitude different to each other.
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Quasi-pattern formation in the stochastic Levin-Segal model. The left
panel shows a population map of the model in the quasi-pattern phase.
The right panel show the same data, but randomised. If the patchiness
were a statistical artefact then it would be preserved in the randomised
version.
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Recurrent epidemics

Individual based models have a long history in epidemiological modelling,
beginning with Bartlett’s pioneering work in the late 1950s.

The dynamics of childhood diseases such as measles, whooping cough and
rubella provide particularly interesting case studies because they are
subject to both external forcing, due to the aggregation of children in
schools, and demographic stochasticity.

Previously, we discussed quasi-cycles about a deterministic fixed point.
Here the forcing leads to a limit-cycle in the deterministic dynamics.

Now the noise excites the transient dynamics about the limit cycle, so the
resulting macroscopic time series are a superposition of these and the
deterministic limit cycle.

The relative proportions of the two periodicities reflected in the power
spectrum then depend on the stability of the limit-cycle and the size of the
system. Such an analysis can encompass and explain the differing
periodicities of whooping cough and measles before and after mass
vaccination.
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5. Concluding remarks

Our aim in this lecture has been to highlight the trend towards models in
ecology being individual based. There are several advantages in using
stochastic models of this kind: they are easier to construct than PLMs,
they are more intuitive, and they predict phenomena which deterministic
models miss.

The importance of stochastic effects has long been known, going back to
the earliest Monte-Carlo simulations of epidemic spreading and fade-out,
but computational investigations have out-paced the theoretical
understanding of such models.

Approaches based on the master equation are starting to remedy this and
we have tried here to give an overview of the philosophy and methodology
of these. We expect that future research will continue to develop
techniques based on this starting point.
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We would also expect that in future the trend will be towards whole
classes of models which interpolate between these different traditions of
model building.

Thus agent-based models would be simplified by construction of a chain of
related models that would terminate with a relatively simple IBM, which in
turn could be studied analytically and its deterministic limit compared with
the differential equations that are generally postulated phenomenologically.

This lecture was based on the following article:

“Stochastic formulation of ecological models and their applications”.
Trends Ecol. Evol. 27, 337 (2012).

It contains a large number of references and can be obtained from my
website: http://www.theory.physics.manchester.ac.uk/~ajm/
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