Individual-based and structured population models based on dynamic energy budgets

Roger M. Nisbet

University of California, Santa Barbara

Context

• Many fundamental scientific questions in ecology and ecotoxicolgy relate to the effects of **environmental change** on **populations, communities and ecosystems**.

- These issues are of **critical societal importance**.
- Pure empiricism is inadequate.
- Theory is required.
- **Dynamics of budgets of energy and elemental matter** should be a component of this theory.

Mass and Energy Accounting

- A living organism is thermodynamically in a non-equilibrium state, maintained by throughput of energy and elemental matter.
- Energy/mass budgets relate the changes in the state of an individual organism (i-state) of an organism to inputs and outputs.
- Inputs are energy and elemental matter assimilated from the environment (e.g. through food).
- Outputs include eggs, sperm, neonates, seeds, and also abiotic "products" (e.g. feces, CO_2 , NH_3) released to the environment.
- **<u>Dynamic Energy Budget</u>** (DEB) models describe how the environment "drives" changes in the state of the organism.

Energy/mass budgets at different levels of biological organization

- Suborganismal: E/M budgets impact gene expression and physiological/biochemical rates.
- Individual Organism: E/M budgets relate "performance" (growth, development, reproduction) to environment.
- Population: E/M budgets influences changes in population over time (*qualitative*: stability, cycles and *quantitative*: population size, age and size structure).
- **Community**: E/M budgets may impact biodiversity (debatable)
- **Ecosystem**: Focus on energy and material flows among *groups of species* (e.g. trophic levels).

DEB theory aims to relate processes at the different levels, but starts with a representation of *individual* budgets.

Aims of lecture

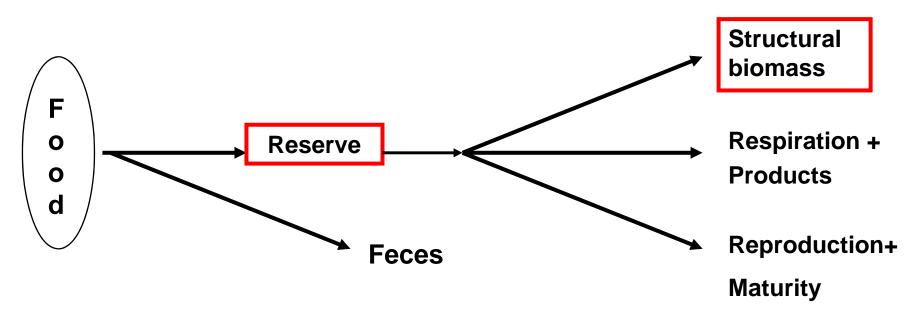
- 1) Introduce Dynamic Energy Budget (DEB) theory
- 2) Describe demography based on a DEB model
- 3) Introduce (with applications) DEB-based "structured" population models written as:
 - ordinary differential equations
 - delay-differential equations

4) **DEB-based individual-based models** (IBMs)^{*} (with application)

* DEB-IBM exercise available

Dynamic Energy Budget models

Sloppy representation of Kooijman's DEB model^{*}



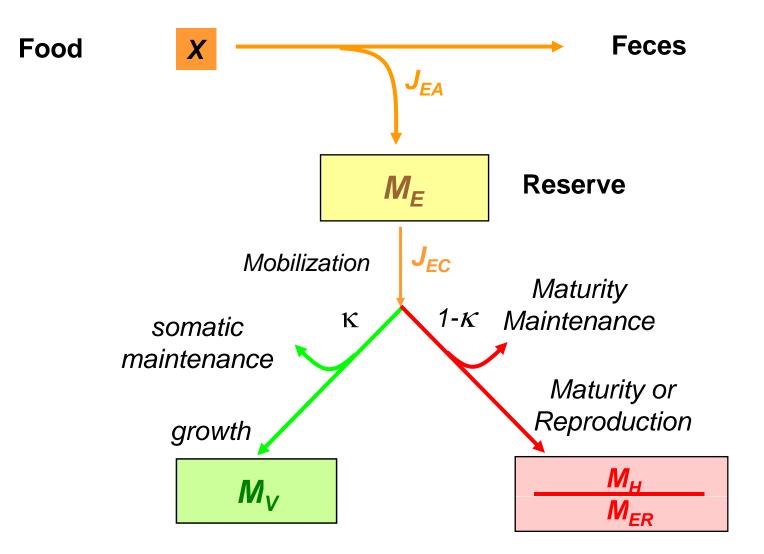
Key Ingredients:

Structure: biomass that requires maintenance.

Reserve: biomass that can be mobilized for metabolic processes

- S.A.L.M. Kooijman *Dynamic Energy Budgets for Metabolic Organization*. Cambridge University Press, 2010
- Lectures by R. Nisbet: http://www.cein.ucla.edu/new/p156.php?pageID=367

Kooijman's "standard" DEB model



Kooijman's "standard" DEB model^{*}

i-state variables

- **Reserve biomass** at time *t*
- Structural biomass at time t
- "Cumulative reproduction", i.e. total carbon allocation to reproduction buffer by time *t*
- Total allocation to "maturity" by time t.
- Hazard rate at time t, i.e. instantaneous "risk" of mortality
- Aging acceleration at time t related to level of damage inducing compounds

Parameters

Total of ~12 parameters. Of these some are expected to be broadly invariant across taxa and others scale in predictable way with size. This opens the way to generality. For many applications, fewer state variables and parameters suffice.

S.A.L.M. Kooijman (2010) Dynamic Energy Budget models for metabolic organization. Cambridge University Press.

T. Sousa et al (2010)., Philosophical Transactions of the Royal Society B, 365:3413-3428.

Kooijman's "standard" DEB model equations

$$\begin{aligned} \frac{d}{dt}M_E &= \dot{J}_{EA} - \dot{J}_{EC} \\ \frac{d}{dt}M_V &= \dot{J}_{VG} = (\kappa \dot{J}_{EC} - \dot{J}_{EM})y_{VE} \\ \frac{d}{dt}M_H &= (1-\kappa)\dot{J}_{EC} - \dot{J}_{EJ} \quad \text{if } M_H < M_H^p \quad \text{, else } \frac{d}{dt}M_H = 0 \\ \frac{d}{dt}M_{ER} &= 0 \quad \text{if } M_H < M_H^p \quad \text{, else } \frac{d}{dt}M_{ER} = (1-\kappa)\dot{J}_{EC} - \dot{J}_{EJ} \\ \text{with} \quad \dot{J}_{EA} &= c(T)f\{\dot{J}_{EAm}\}L^2 \quad \text{if } M_H \ge M_H^b \quad \text{else } \dot{J}_{EA} = 0 \\ \dot{J}_{EC} &= c(T)\{\dot{J}_{EAm}\}L^2 \frac{ge}{g+e}\left(1 + \frac{L}{gL_m}\right) \\ \dot{J}_{EM} &= c(T)[\dot{J}_{EM}]L^3 \\ \dot{J}_{EJ} &= c(T)\dot{k}_JM_H \end{aligned}$$

PLUS ODEs for aging acceleration and hazard rates

Kooijman's "standard" DEB model equations

$$\begin{aligned} \frac{d}{dt}M_E &= \dot{J}_{EA} - \dot{J}_{EC} \\ \frac{d}{dt}M_V &= \dot{J}_{VG} = (\kappa\dot{J}_{EC} - \dot{J}_{EM})y_{VE} \\ \frac{d}{dt}M_V &= (1) \ \kappa\dot{J}_{EC} - \dot{J}_{EI} \qquad \text{ITM}_H \left(M_P^p\right), \text{ se } I_{-} \left(I_H = 0\right) \end{aligned}$$

$$\begin{aligned} \frac{d}{dt}M_V &= c(T)f\{\dot{J}_{EAH}\}L \qquad \text{if } M_H \geq M_H \quad \text{else } J_{EA} = 0 \\ \dot{J}_{EC} &= c(T)(\dot{J}_{EAH})L^2 \frac{g_C}{g_L + 0} \left(I_H - \dot{J}_{EA} = 0\right) \\ \dot{J}_{EM} &= c(T)[\dot{J}_{EM}]L^3 \\ \dot{J}_{EJ} &= c(T)[\dot{J}_{EM}]L^3 \end{aligned}$$

PLUS ODEs for aging acceleration and hazard rates

DEB-based Population Dynamics

First...a little demography

Consider a population of females divided into discrete age classes

Let S_a be the fraction of newborns that **survive** to age a

Let β_a be the total **number of offspring** from individual aged *a*.

First...a little demography

Consider a population of females divided into discrete age classes

Let S_a be the fraction of newborns that **survive** to age a

Let β_a be the total **number of female offspring** from individual aged *a*.

Then the average number of female offspring expected in a lifetime is

$$R_0 = \sum_{\substack{\text{all age}\\\text{classes}}} \beta_a S_a$$

This quantity is called **net reproductive rate** in many ecology texts (N.B. not a rate)

In continuous time $R_0 = \int_0^\infty \beta(a)S(a)da$ (changing summation \rightarrow integral)

First...a little demography

Consider a population of females divided into discrete age classes

Let S_a be the fraction of newborns that **survive** to age *a*

Let β_a be the total **number of offspring** from individual aged *a*.

Then the average number of offspring expected in a lifetime is

$$R_0 = \sum_{\substack{\text{all age} \\ \text{classes}}} \beta_a S_a$$

This quantity is called **net reproductive rate** in many ecology texts (N.B. not a rate)

In continuous time $R_0 = \int_0^{\infty} \beta(a)S(a)da$ (changing summation \rightarrow integral) In standard DEB, we can compute $\beta(a)$ and S(a) by solving a system of 6 differential equations for a constant environment. Then we can compute R_0 .

A little population ecology

- Ultimate fate of a closed population that does not influence its environment is **unbounded growth** or **extinction**.
- Without feedback, the long-term average pattern of growth or decline of populations is **exponential** even in fluctuating environments
- The **long term rate of exponential growth**, *r*, is obtained as the solution of the "Euler-Lotka" equation¹

$$1 = \int_{0}^{\infty} \beta(a) S(a) e^{-ra} da$$

(Note similarity to equation for R_0)

• **Feedback** from organisms in focal population to the environment may lead to an **equilibrium population** ($R_0 = 1$) or to more exotic population dynamics such as cycles.

1. A.M. de Roos (*Ecology Letters* 11: 1-15, 2009) contains a computational approach (with sample code) for solving this equation when $\beta(a)$ and S(a) come from a DEB model.

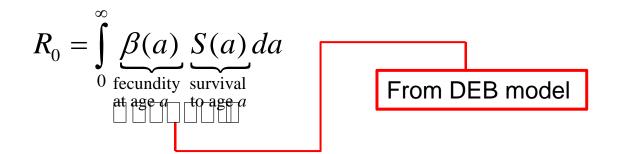
Application: response of mussels to ZnO NPs^{1,2}

Adult marine mussels, *Mytilus galloprovincialis*, were exposed to ZnO NPs for 12 weeks at concentrations up to 2 mg L⁻¹.

Basic measurements on individuals(2 food levels)

- 1) weights of shell, gonad, somatic tissue
- 2) Zn distribution within organism
- 3) Tank clearance rates \rightarrow information on food consumed.
- 4) lindividual clearance rates
- 5) Oxygen consumption rates.

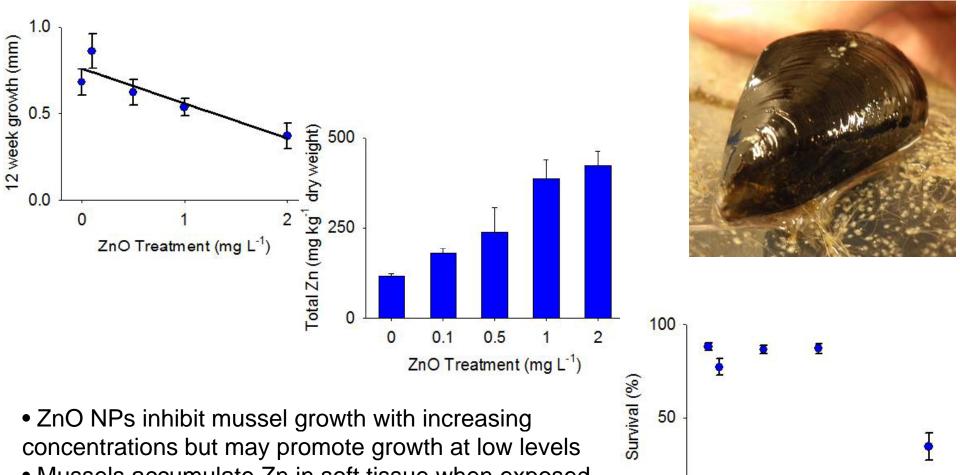
Population level prediction



- 1. S. Hanna et al . PLoS ONE, 8 (4), e61800 (2013)
- 2. E.B. Muller et al. Journal of Sea Research, submitted

used to estimate toxicity parameters

12 week exposure of *M. galloprovincialis* to ZnO NPs



0

0

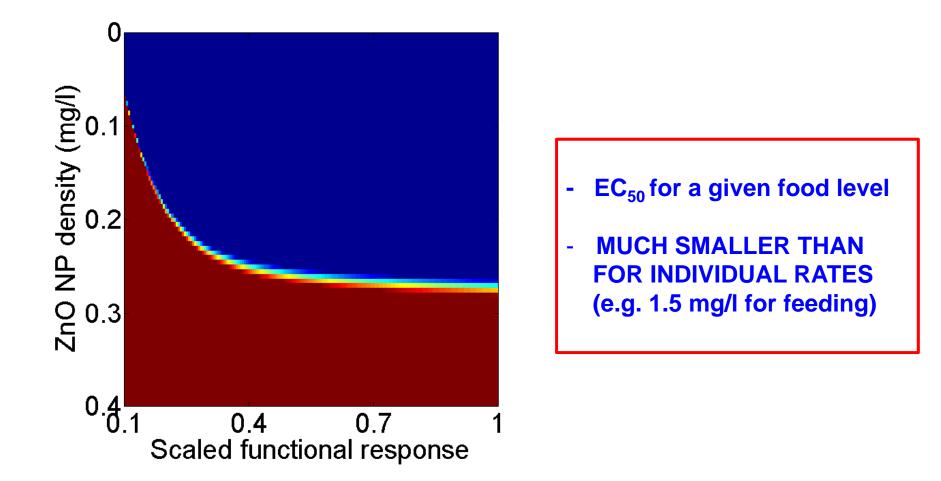
ZnO Treatment (mg L⁻¹)

2

• Mussels accumulate Zn in soft tissue when exposed to ZnO NPs

• Survival of mussels decrease at 2mg L⁻¹ ZnO NPs

EC₅₀ EXPECTED LIFE-TIME PRODUCTION OF REPRODUCTIVE MATTER



Incorporating feedback from organisms to environment

Simplest approach: use ordinary differential equations or delay differential equations for p-state dynamics

ODEs can be derived with "ontogenetic symmtery"¹

- 1) All physiological rates proportional to biomass (in biomass budget models) or to structural volume (in DEB models)
- 2) All organisms experience the same per capita risk of mortality (hazard)
- 3) Include ODEs describing environment (E-state)

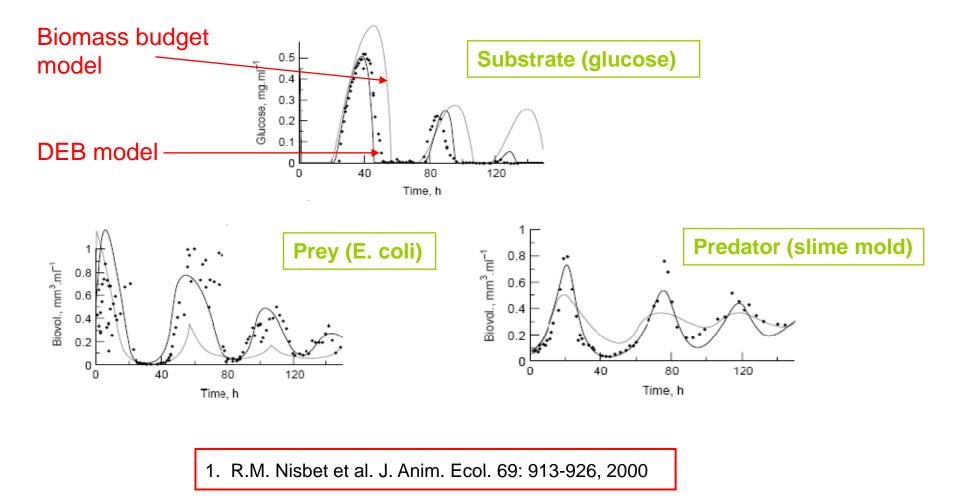
Resulting equations describe biomass dynamics

Delay differential equations (DDEs) follow if assumption 2 is relaxed to^{2,3}:

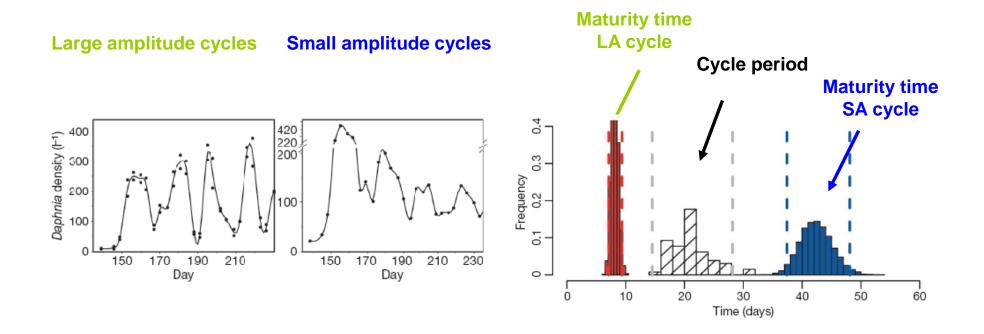
2a) All organisms in a given life stage experience the same risk of mortality

- 1. A.M. de Roos and L.Persson (2013). *Population and Community Ecology of Ontogenetic Development*. Princeton University Press. See also lectures by de Roos: http://www.science.uva.nl/~aroos/Research/Webinars
- 2. R.M. Nisbet. Delay differential equations for structured populations. Pages 89-118 in S. Tuljapurkar, and H. Caswell, editors. *Structured Population Models in Marine, Terrrestrial, and Freshwater Systems.* Chapman and Hall, New York.
- 3. Murdoch, W.W., Briggs, C.J. and Nisbet, R.M. 2003. *Consumer-Resource Dynamics*. Princeton University Press.

Application of ODEs: A DEB-based ODE model (with reserves) describes observed cycles in microbial populations

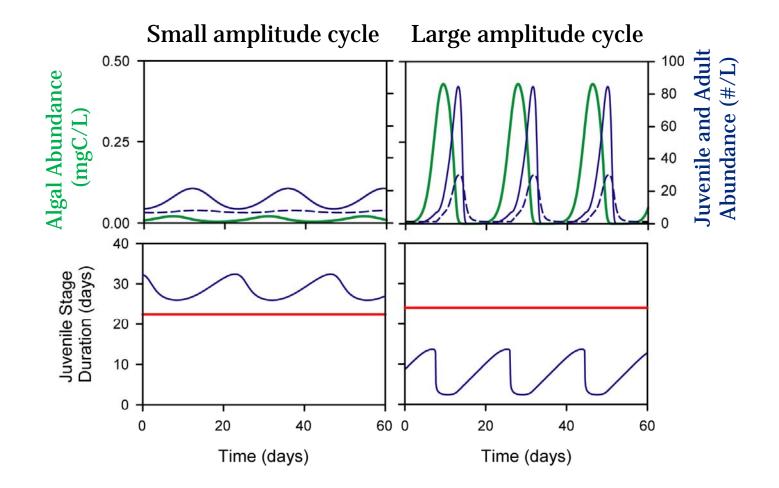


A DDE model describes Daphnia populations in large lab systems^{*}



^{*} McCauley, E., Nelson, W.A. and Nisbet, R.M. 2008. Small amplitude prey-predator cycles emerge from stage structured interactions in *Daphnia*-algal systems. *Nature*, **455**: 1240-1243.

DDE model

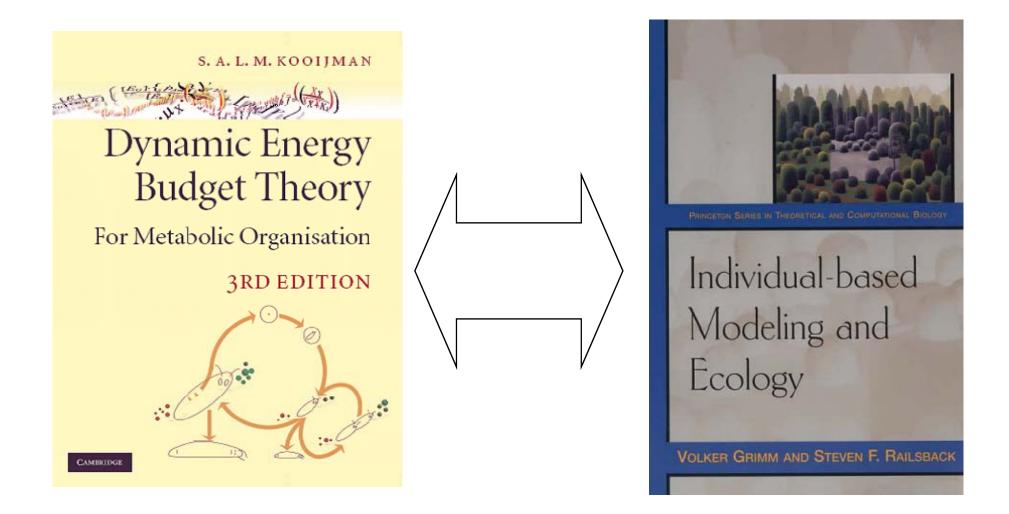


• Key feature absent from standard DEB: food-dependent juvenile mortality

Individual or agent based population models (IBMs)*

* Many thanks to Ben Martin for collaboration and slides on IBMs

DEB-based IBMs^{*}



* B.T. Martin, E.I. Zimmer, V.Grimm and T. Jager (2012). *Methods in Ecology and Evolution* 3: 445-449

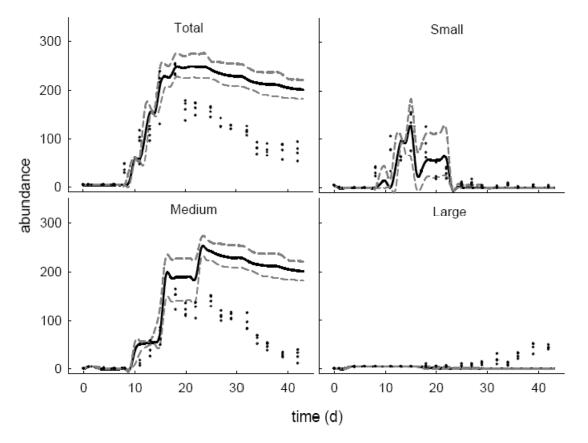
DEB-IBM food feces assimilation reserve mobilisation maturity maintenance ic maintenance reproduction growt maturation (p) structure maturity buffer ···**≻** eggs

- Implemented in *Netlogo* (Free)
- Compute population dynamics in simple environments with minimal programming
- User manual with examples

DEB-IBM display

Population model tests*

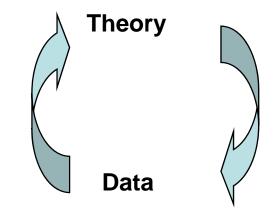
Low food (0.5mgC d⁻¹)



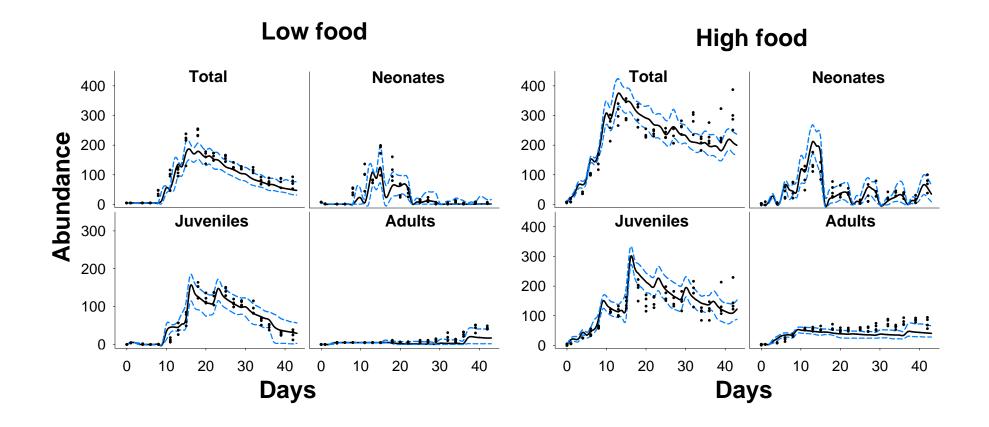
^{*} B.T. Martin, T. Jager, R.M. Nisbet, T.G. Preuss, V. Grimm(2013). Predicting population dynamics from the properties of individuals: a cross-level test of Dynamic Energy Budget theory. *American Naturalist*, **181**:506-519.

Refining the model

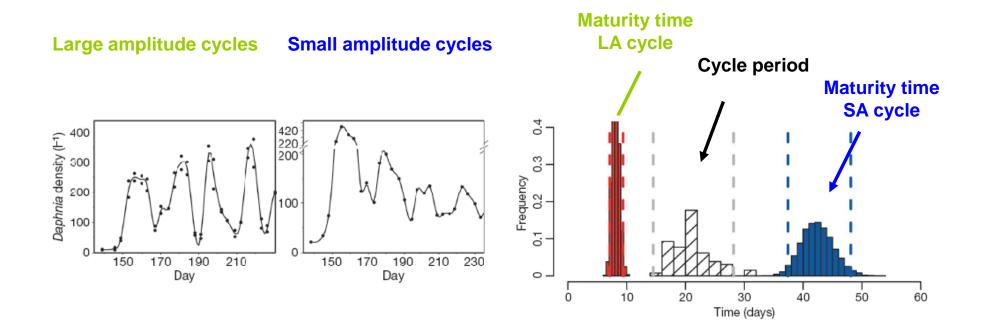
- Martin et al. tested 3 size selective food-dependent submodels
 - Juveniles more sensitive
 - Adults more sensitive
 - Neutral sensitivity
- Fit submodels to low food level compare GoF at all food levels



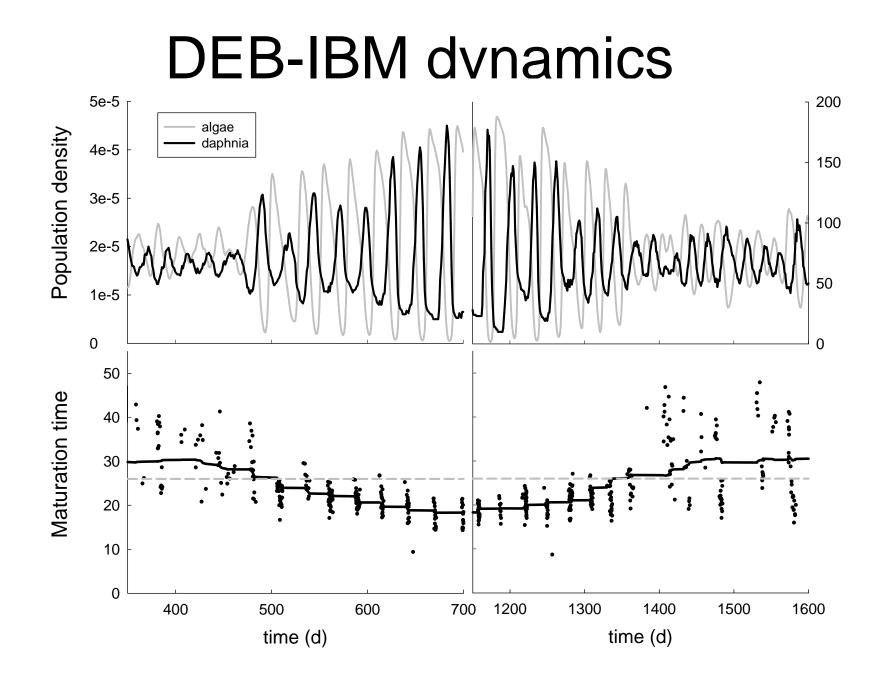
Best model



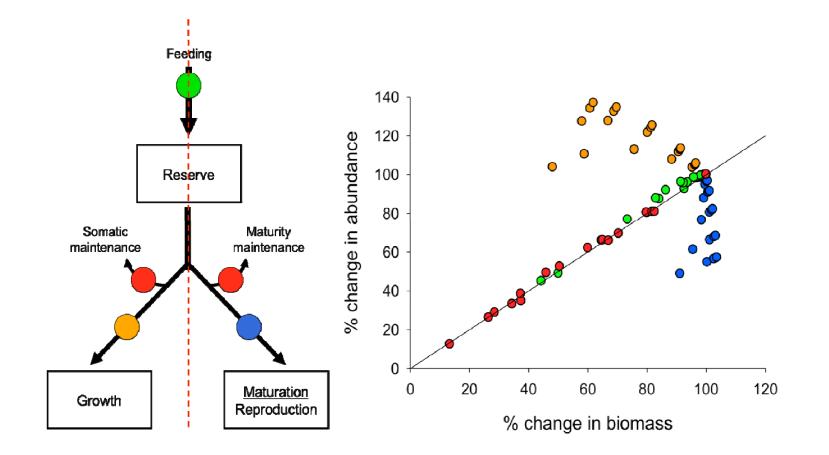
Futher test: Daphnia populations in large lab systems*



^{*} McCauley, E., Nelson, W.A. and Nisbet, R.M. 2008. Small amplitude prey-predator cycles emerge from stage structured interactions in *Daphnia*-algal systems. *Nature*, **455**: 1240-1243.



Further application: relating physiological mode of action of toxicants to demography of populations near equilibrium¹



1. Martin, B., Jager, T., Nisbet, R.M., Preuss, T.G., and Grimm, V, submitted.

Take Home Messages on population dynamics

- With no feedback from organisms to their environment, a population will ultimately grow or decline exponentially.
- Exponential growth rate can be calculated from DEB model of complete life cycle.
- With feedback, describing population dynamics requires either an individual-based or a structured population model. Good software available for both.
- With very special assumptions, structured population models reduce to a system of ODEs or DDEs.
- DEB-IBM results may be consistent with previous sizestructured models – gives support for both.

Aims of lecture

Introduce Dynamic Energy Budget (DEB) theory
 DEB-based demography

3) DEB-based "structured" population models:

- ordinary differential equations
- delay-differential equations

4) DEB-based individual-based models (IBMs)

Aims of lecture

- 1) Introduce Dynamic Energy Budget (DEB) theory
- 2) DEB-based demography Mussels exposed to nanoparticles
- 3) DEB-based "structured" population models:
 - ordinary differential equations Microbial chemostat
 - delay-differential equations Daphnia population dynamics
- 4) DEB-based individual-based models (IBMs) Daphnia (again) Ecotoxicology of populations at equilibrium