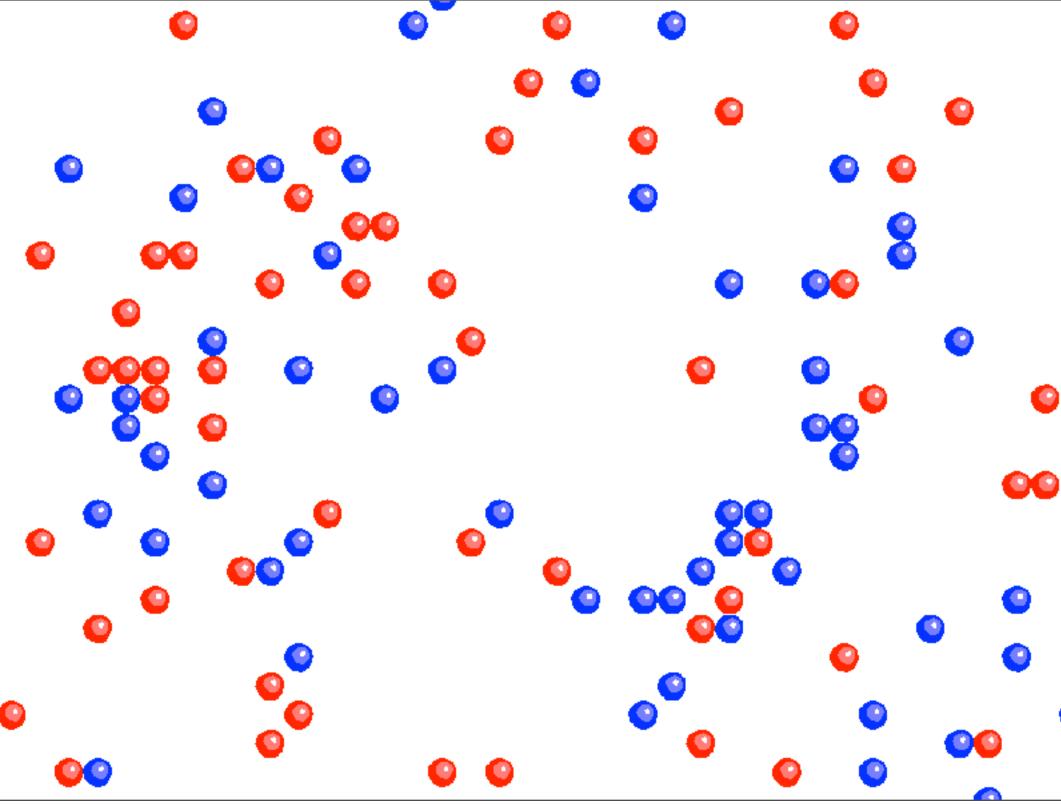
The ecology and evolution of spatially extended systems: cellular automata and analytical approximations

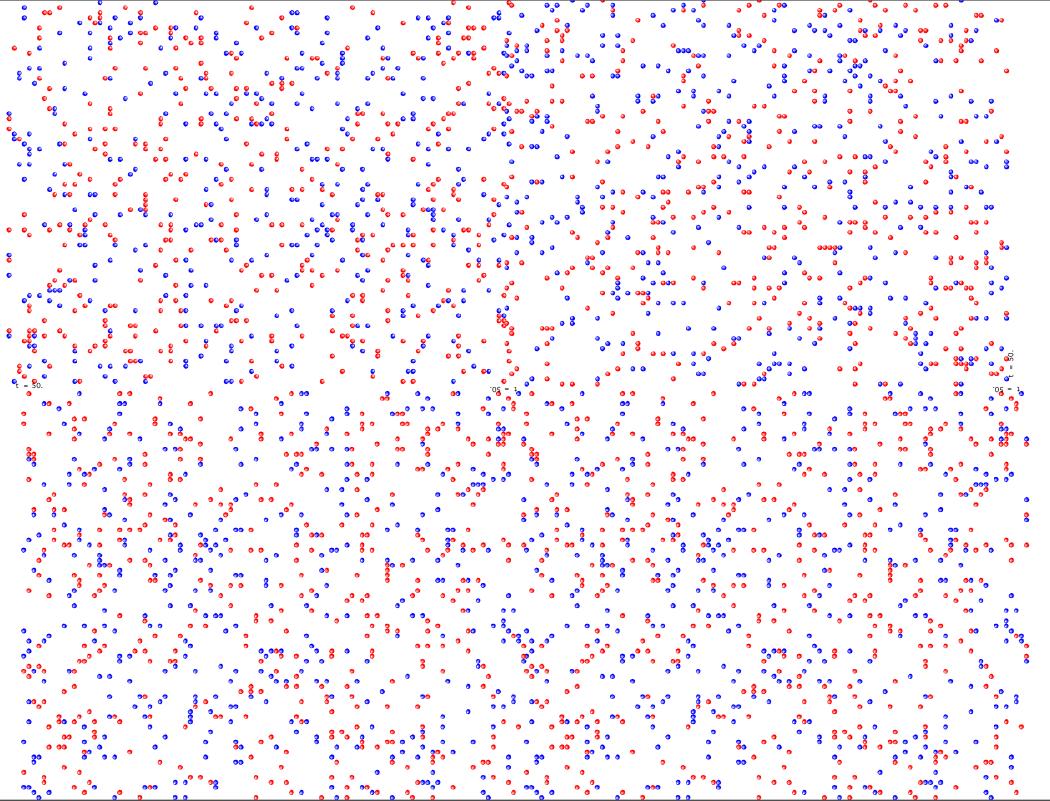
Minus van Baalen

Thermodynamics Success Story

Macro-scale laws from micro-scale processes :

- Pressure & temperature from molecule movement
- Second Law: Entropy increases



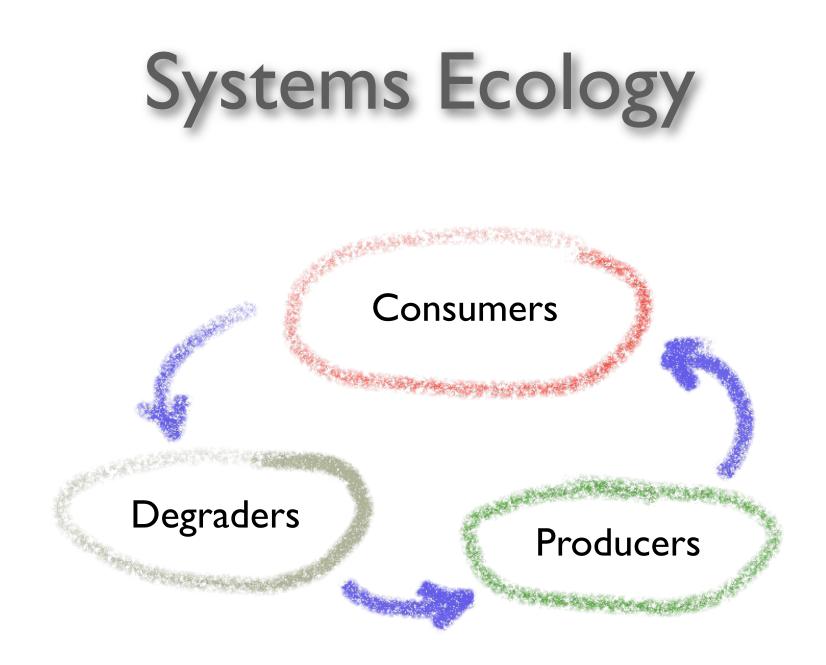


jeudi 19 septembre 2013

Dream

Derive Universal Ecological Laws from

- Physiology
- Population dynamics
- Genetics



- "Healthy' ecosystems maximise thoughput
- Complex ecosystems are more stable
- Evolution always produces more complex systems

- "Healthy' ecosystems maximise thoughput
- Complex ecosystems are more stable
- Evolution always produces more complex systems

- "Healthy' ecosystems maximise thoughput
- Complex ecosystems are more stable
- Evolution always produces more complex systems

- "Healthy' ecosystems maximise thoughput
- Complex ecosystems are more stable
- Evolution always produces more complex systems

Evolution

Sole universal structuring principle

- almost faithful copying
 - reproduction + mutation
- selection

No simple emergent consequences

- no system-wide optimization
- no 'progress'

Space

Why space is important

Different theoretical approaches

- Patch models
- Levins' metapopulation
- Reaction-diffusion models
- Cellular automata (& other individual-based models)
- (Correlation dynamics)

Parasitoid

http://www.idw-online.de

looking for hosts

CPB Silwood Park

Drosophila melanogaster larvae

Oviposition

http://muextension.missouri.edu

Oviposition

http://www.anbp.org

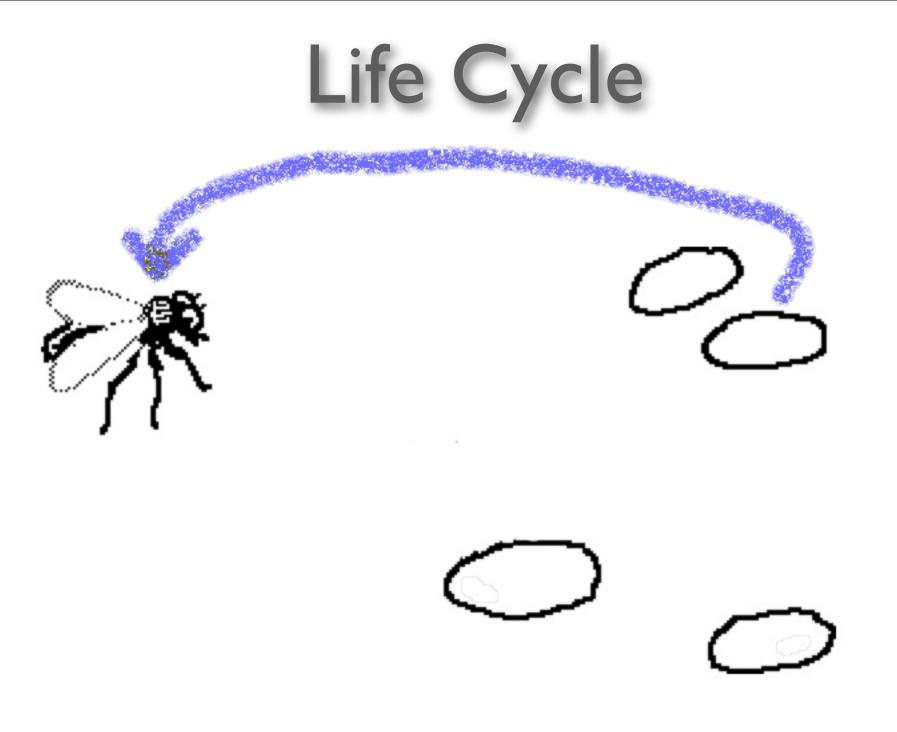
Emergence

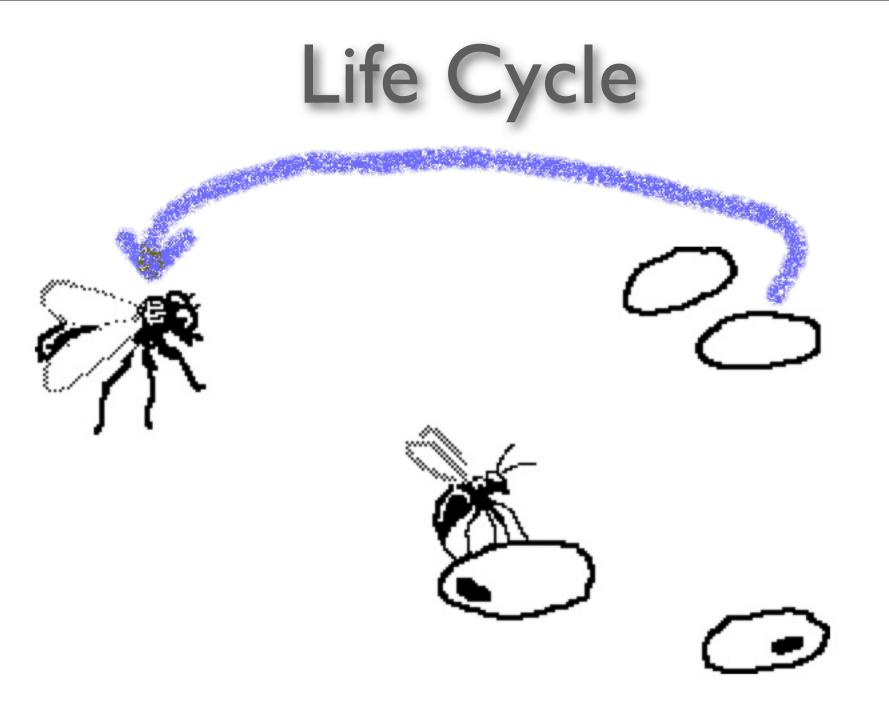
http://whatcom.wsu.edu

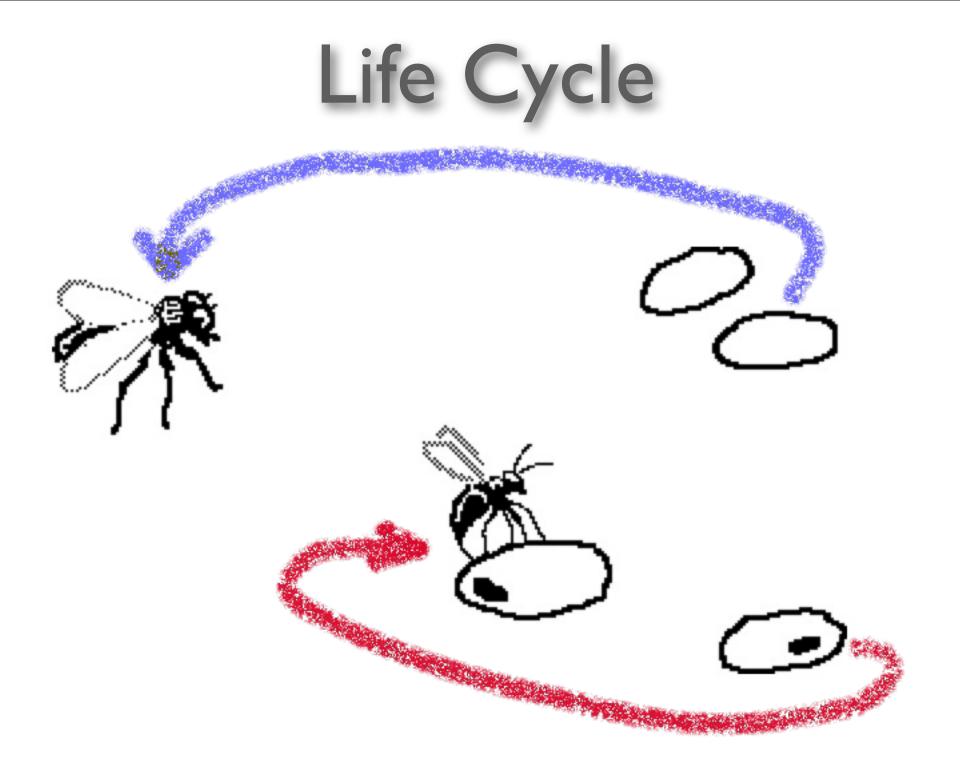
Life Cycle

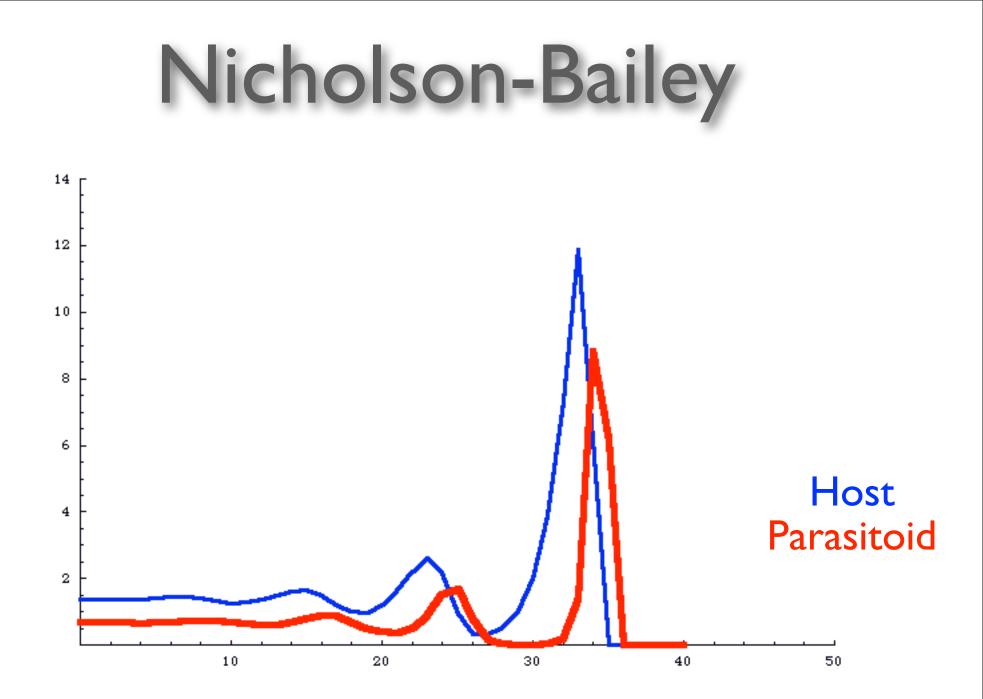
Life Cycle

jeudi 19 septembre 2013

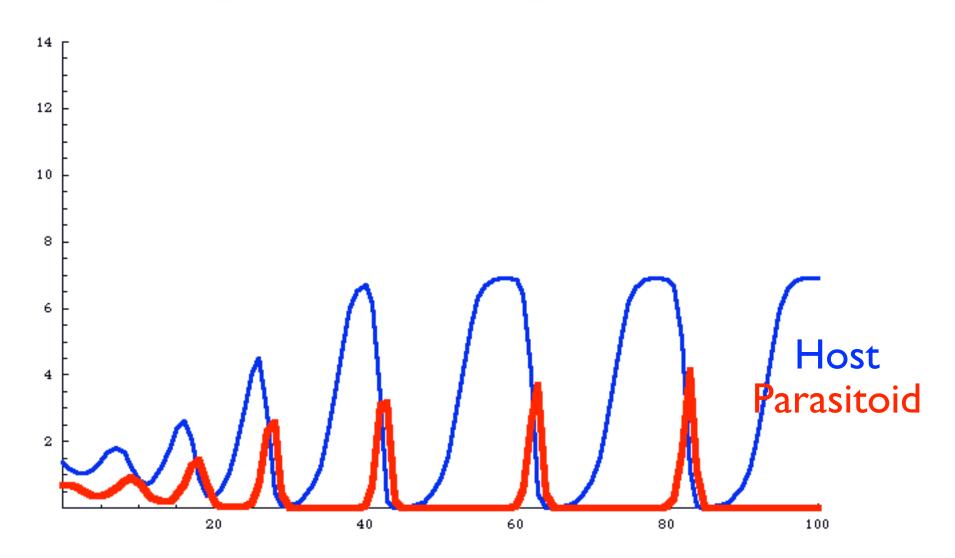




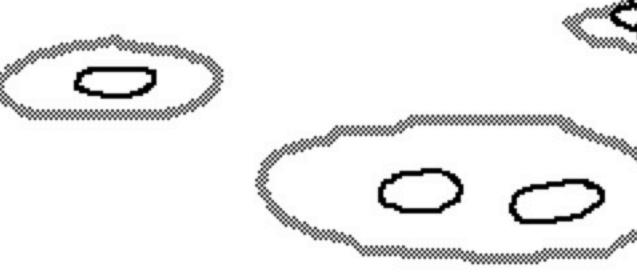


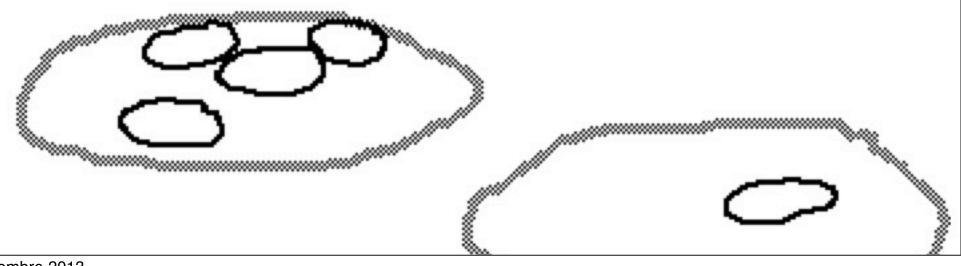


NB plus compétition



Heterogeneity





Localisation

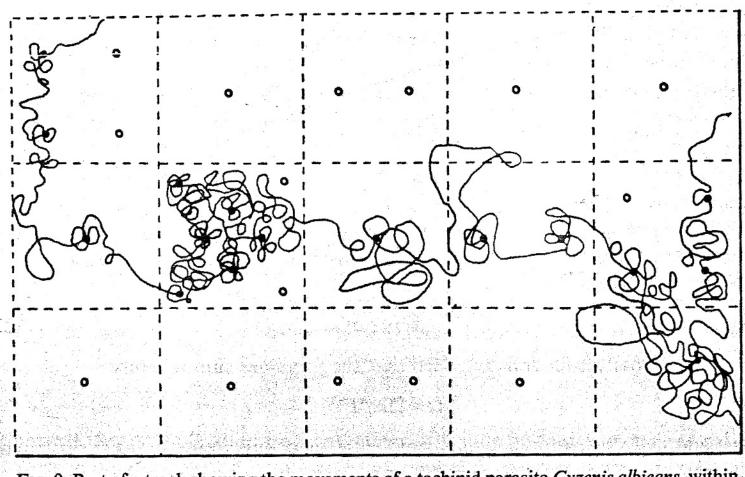
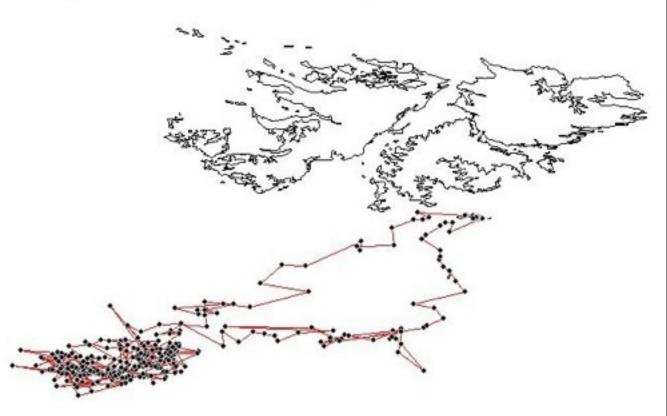
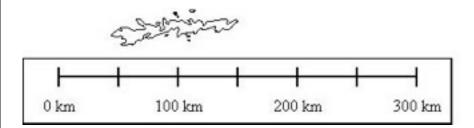


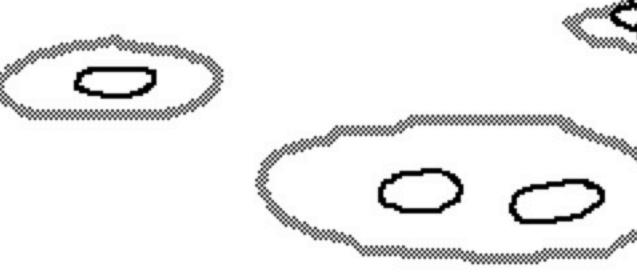
FIG. 9. Part of a track showing the movements of a tachinid parasite *Cyzenis albicans*, within an arena. The circles represent small drops of sugar solution upon which the parasite adults feed. The solid circles show where feeding occurred.

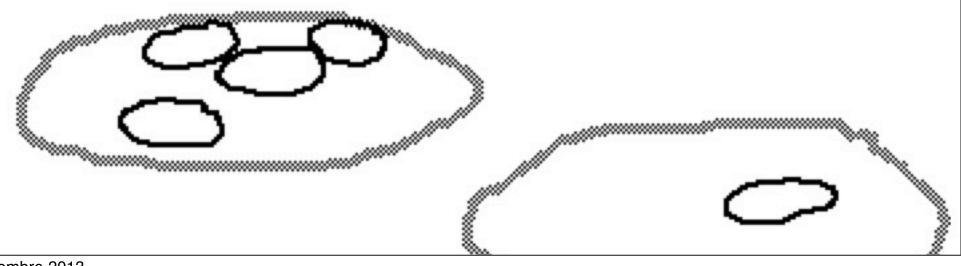
A Foraging Sea-Elephant



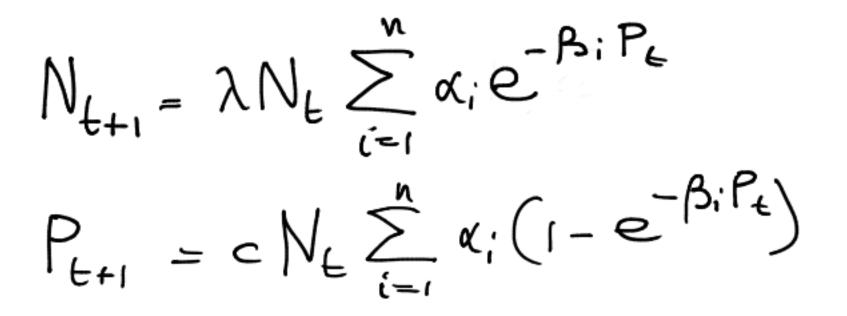


Heterogeneity





Hassell & May 1974



Hassell & May 1974

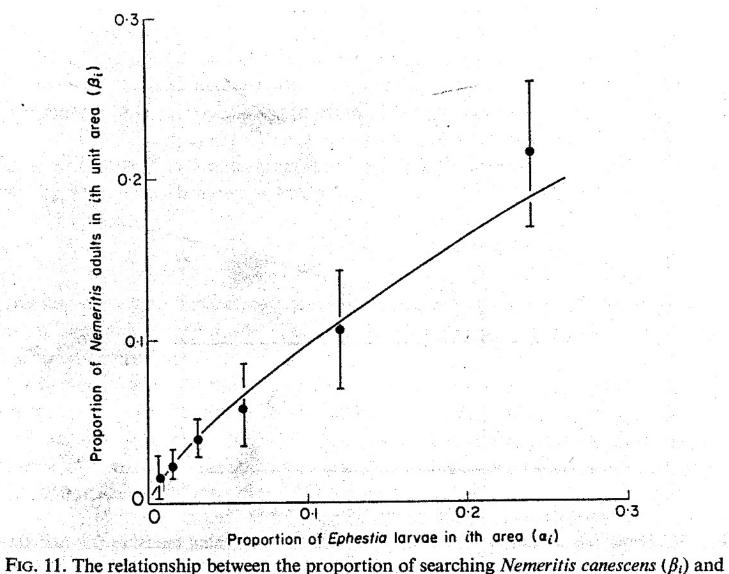
of equal low density. The distribution of predators was achieved by a single parameter characterization (μ) such that

$$\beta_i = c \alpha_i^{\ \mu} \tag{2}$$

where c is a normalization constant and μ is the 'relative aggregation index'.

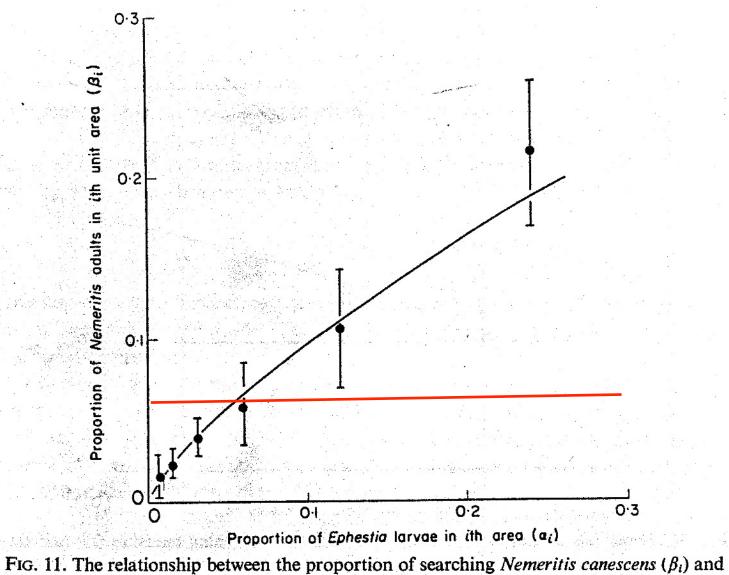
Eqn (2) was not intended to be a realistic description of how predators aggregate. It was chosen for its simplicity and because it conveniently spans the behaviours of random search (u - 0) to complete aggregation in the highest density area making the remainder

regation



the proportion of *Ephestia cautella* larvae (α_i) per unit area from a laboratory interaction (Hassell 1971a, b). The fitted curve was derived by use of eqn (22). $\beta_i = 0.53 \alpha_i \, 0.73 \pm 0.04$.

regation



the proportion of *Ephestia cautella* larvae (α_i) per unit area from a laboratory interaction (Hassell 1971a, b). The fitted curve was derived by use of eqn (22). $\beta_i = 0.53 \alpha_i \, 0.73 \pm 0.04$.

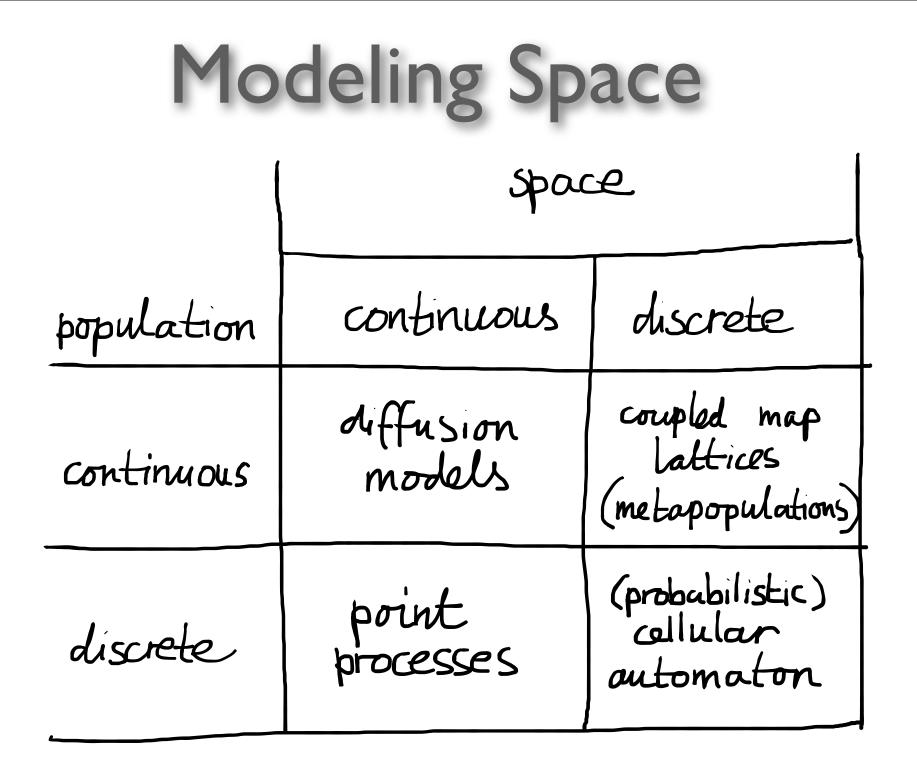
Space is Important

- May determine persistence of species
- Allow more species to coexist
- Modify selective pressures

Space is a Pain

Space makes life difficult for theoreticians

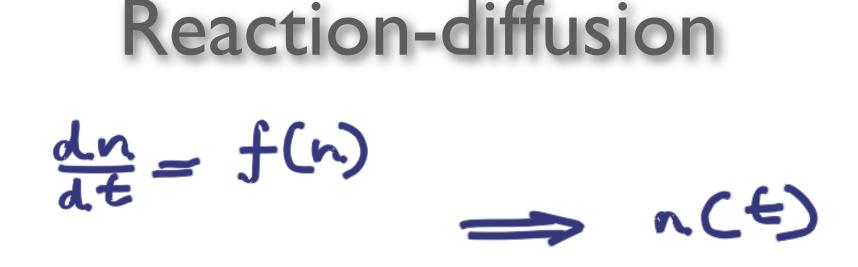
as anyone who has struggled with spatially explicit models is likely to know



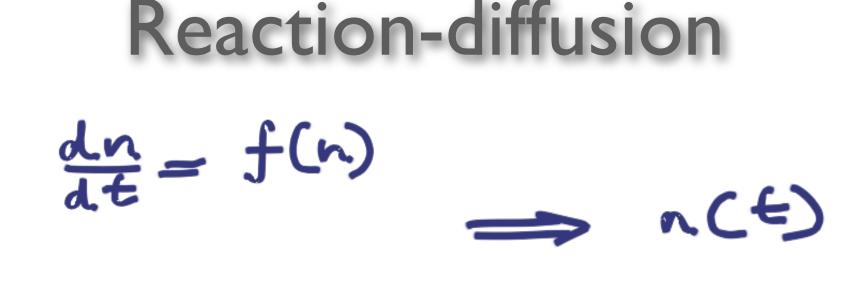
Reaction-diffusion

 $\frac{dn}{dt} = f(n)$

Reaction-diffusion $d_n = f(n)$ $d_n = f(n)$ $d_n = f(n)$



$\frac{\partial n}{\partial t} = D \frac{\partial f}{\partial x^2} + f(n)$



 $\frac{\partial n}{\partial t} = D \frac{\partial f}{\partial x^2} + f(n)$ $\implies n(t, x)$

Multi-species Reaction-diffusion

CRUYWAGEN ET AL.

innovation is to allow key model parameters to vary spatially, reflecting habitat heterogeneity.

Specifically the dynamics of the system is described by

$$\frac{\partial E}{\partial t} = \frac{\partial}{\partial x} \left(D(x) \frac{\partial E}{\partial x} \right) + r_E E(G(x) - a_E E - b_E N), \qquad (2.1a)$$

$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial x} \left(d(x) \frac{\partial N}{\partial x} \right) + r_N N(g(x) - a_N N - b_N E), \qquad (2.1b)$$

which is the Lotka–Volterra competition model with difusion; see, for example, Murray (1989). The functions D(x) and d(x) measure the diffusion rates. The intrinsic growth rates of the organisms are reflected by the positive parameters r_E and r_N . These are scaled so that the maximum values of the functions G(x) and g(x) reflecting the respective carrying

4

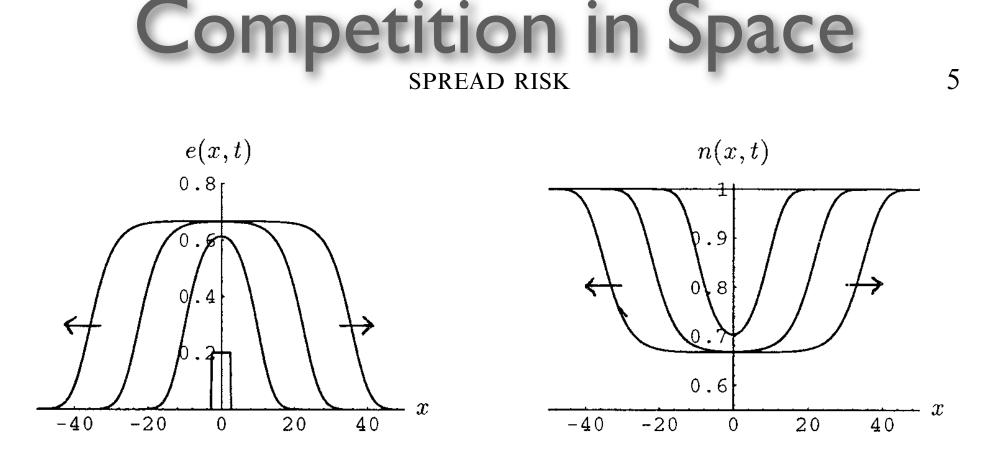


FIG. 1. A travelling wave solution connecting the native-dominant steady state to the coexistence steady state in a spatially uniform environment. Parameter values used were $\gamma_e = \gamma_n = 0.5$, D(x) = d(x) = G(x) = g(x) = 1, and r = 2, so that the coexistence state is the only stable state.

Diffusion approach

Advantages

Disadvantages

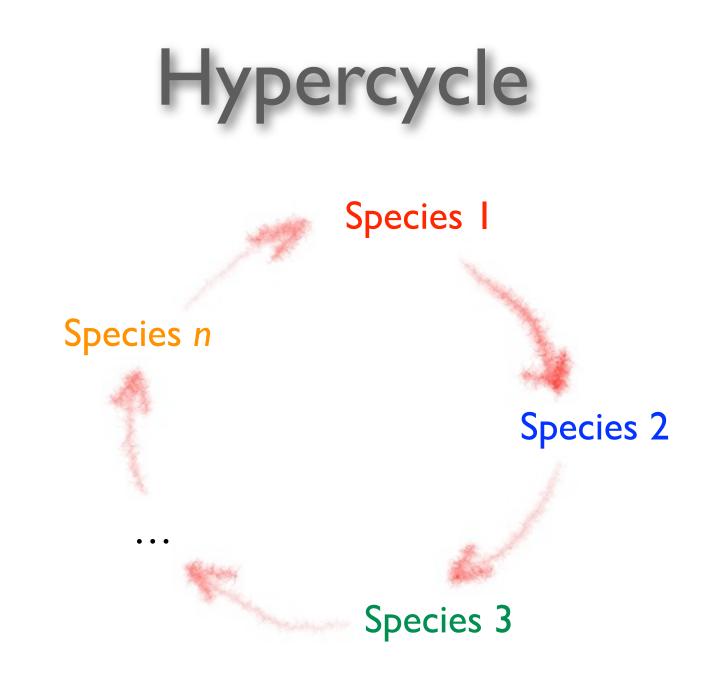
becomes very difficult if movement is nonrandom

becomes very difficult if individuals are 'large'

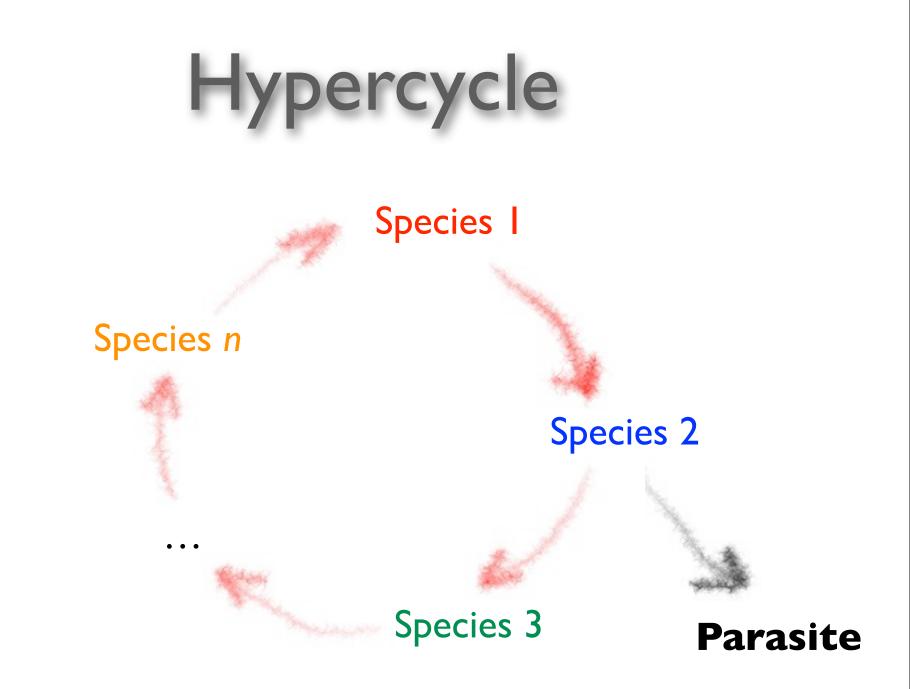
Individuality

Individuality is crucially important

- in particular in spatially explicit settings
- demographic stochasticity inevitable

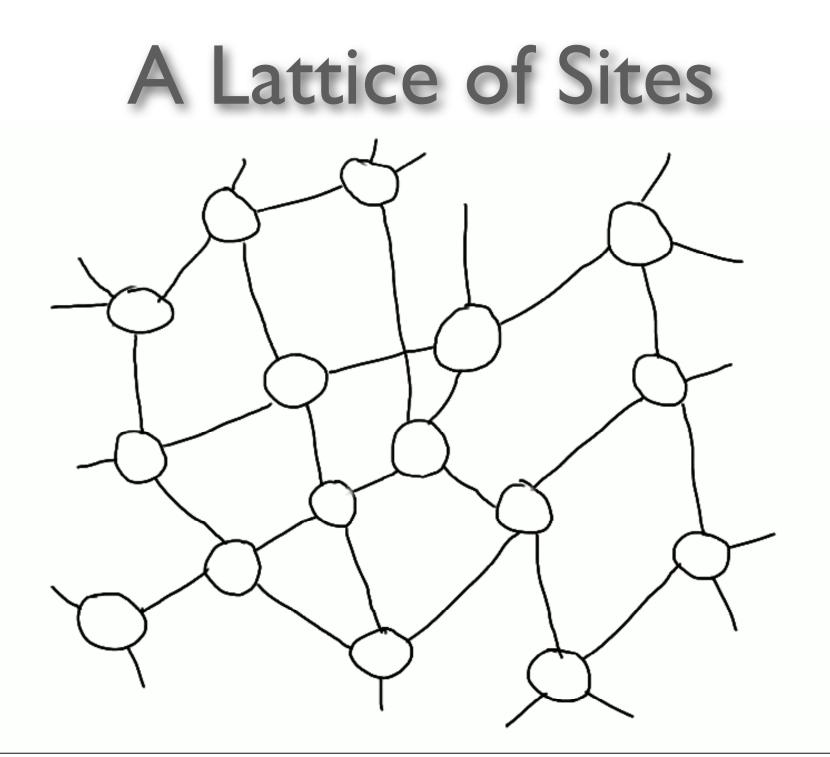


Hypercycle



Hypercycle

jeudi 19 septembre 2013

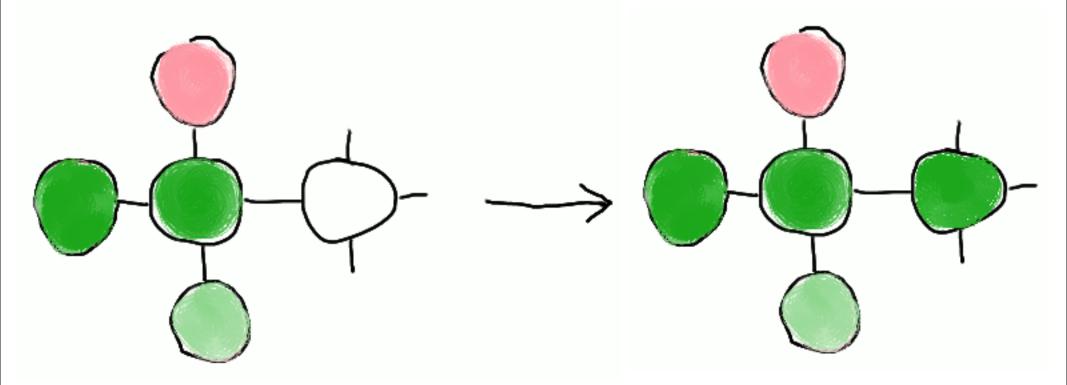


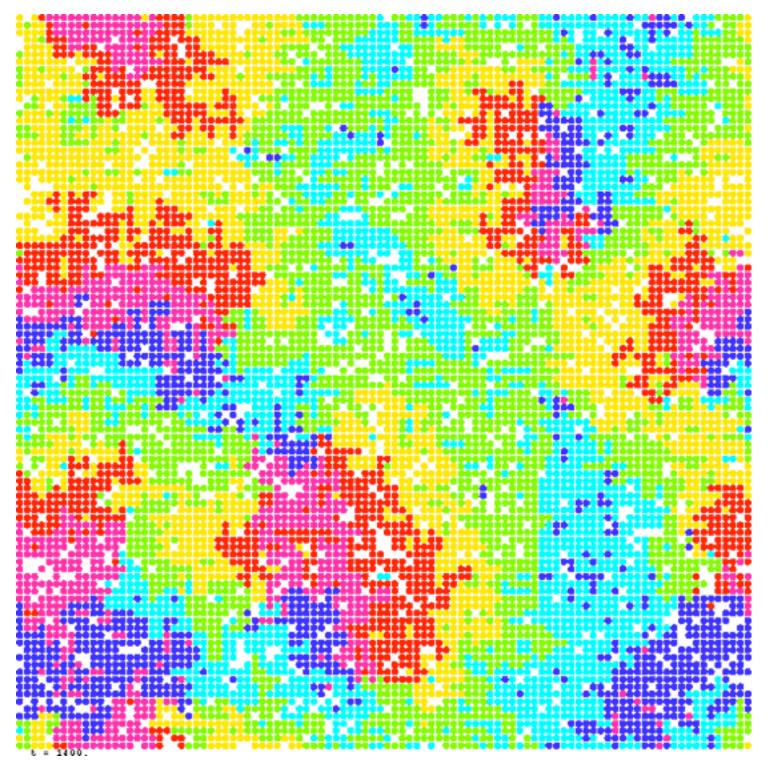
Death

Faithful Reproduction



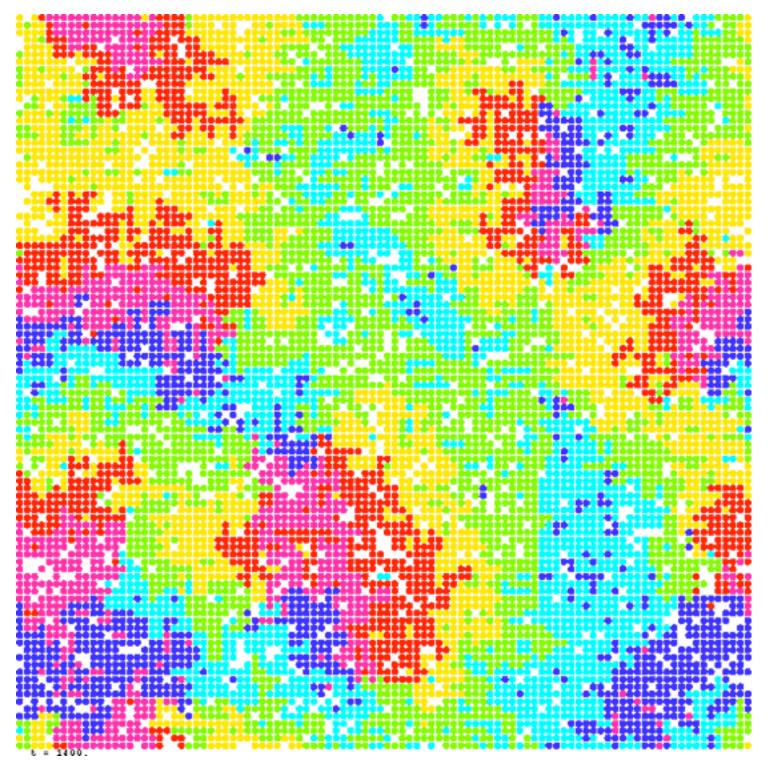
Faithful Reproduction



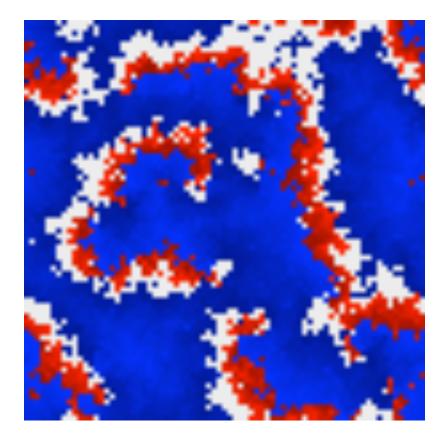


Boerlijst & Hogeweg's (1991)





Boerlijst & Hogeweg's (1991)



van Ballegooijen & Boerlijst 2004

Spatial Hypercycles

Boerlijst & Hogeweg's (1991) hypercycles

- Tend to form rotating spirals
- Parasites swept outward
- Selection on rotation speed
 - favouring higher mortality

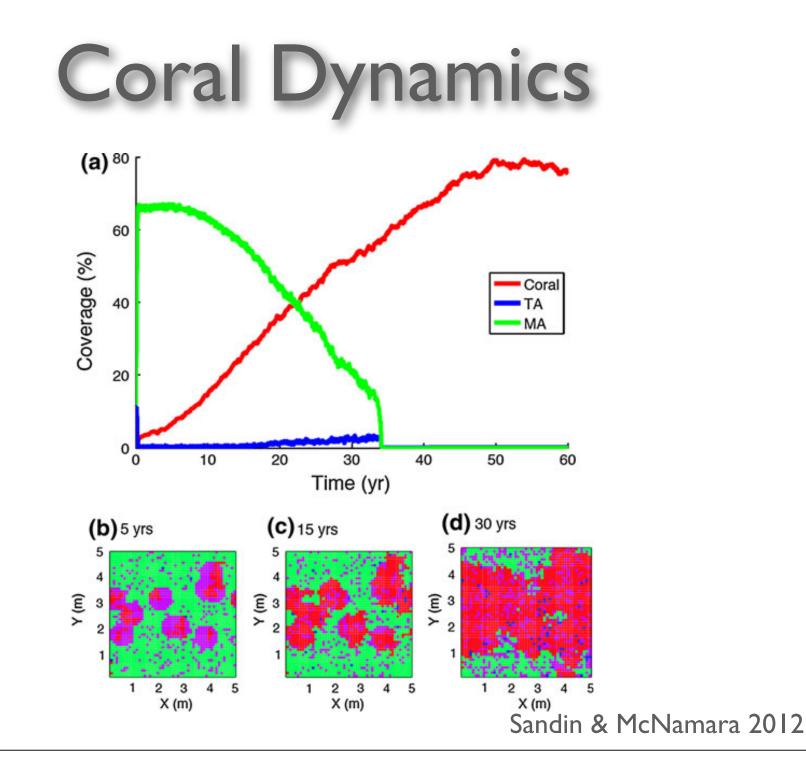
Spatial evolution

Spirals 'unit of selection'

Rotation speed selected trait

But:

- Rapidly rotating spirals 'fly apart'
- Evolution towards criticality
 - Rand, Keeling & Howard 1995



Cellular Automata

- + Nice toys
- + Colourful movies
- Difficult to generalise
- Difficult to obtain deeper insight

Viscous populations

Probabilistic Cellular Automata

Computer Simulations

Mathematical characterisation

- Correlation dynamics
 - Matsuda et al. (1992) ecological application
 - Van Baalen & Rand (1998), Van Baalen (2000),
 Ferrière & Le Galliard (2001), Lion & van Baalen (2007)

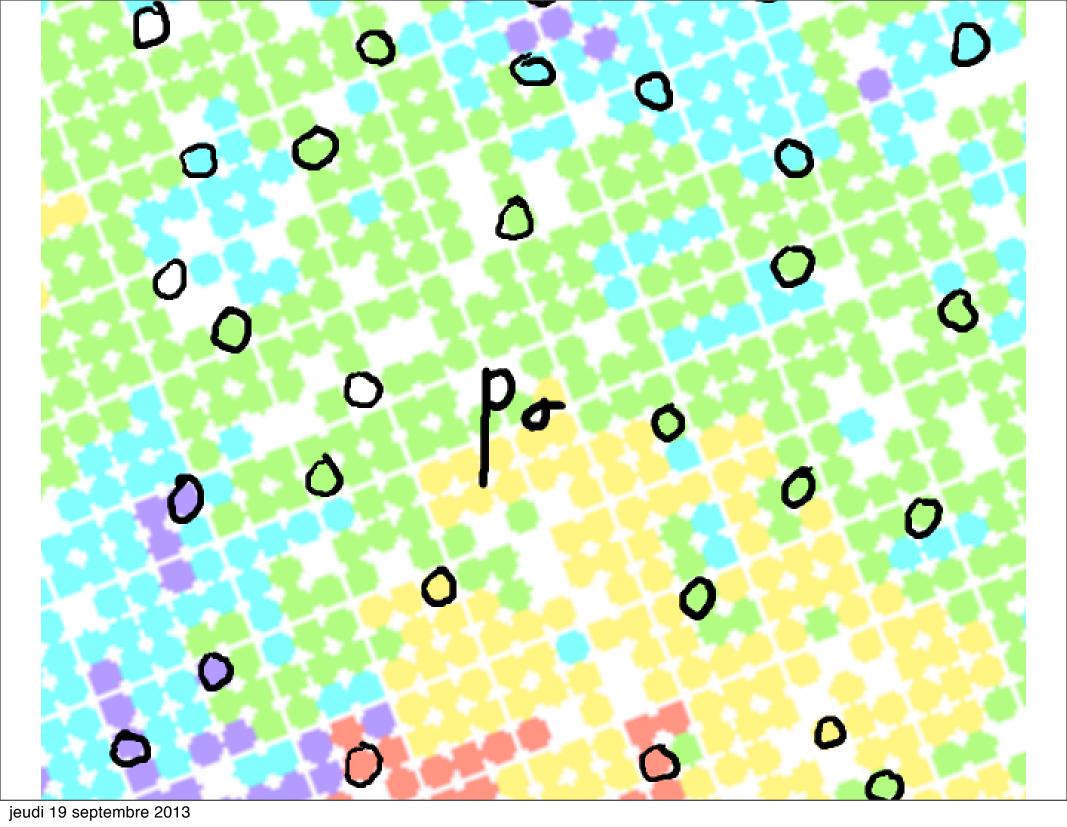
state of the lattice $\mathbb{E}\left[f(\sigma^{t+\delta t})\right] = f(\sigma^{t}) + \sum_{e \in E^{\sigma}} \left(r^{\sigma}(e)\delta t + O(\delta t^{2})\right) \left(f(\sigma^{t}_{e}) - f(\sigma^{t})\right)$ Morris (1997)

state of the lattice $\mathbb{E}\left[f(\sigma^{t+\delta t})\right] = f(\sigma^{t}) + \sum_{e \in E^{\sigma}} \left(r^{\sigma}(e)\delta t + O(\delta t^{2})\right) \left(f(\sigma^{t}_{e}) - f(\sigma^{t})\right)$ Morris (1997)

$$\frac{df}{dt}(\sigma) = \sum_{e \in E} r^{\sigma}(e)\delta f_e$$

state of the lattice $\mathbb{E}\left[f(\sigma^{t+\delta t})\right] = f(\sigma^{t}) + \sum_{e \in E^{\sigma}} \left(r^{\sigma}(e)\delta t + O(\delta t^{2})\right) \left(f(\sigma_{e}^{t}) - f(\sigma^{t})\right)$ Morris (1997))82->0 $\frac{df}{dt}(\sigma) = \sum_{-} r^{\sigma}(e)\delta f_e$

state of the lattice $\mathbb{E}\left[f(\sigma^{t+\delta t})\right] = f(\sigma^{t}) + \sum_{e \in E^{\sigma}} \left(r^{\sigma}(e)\delta t + O(\delta t^{2})\right) \left(f(\sigma^{t}_{e}) - f(\sigma^{t})\right)$ Morris (1997))82->0 $\frac{df}{dt}(\sigma) = \sum_{e \in T} r^{\sigma}(e)\delta f_e$

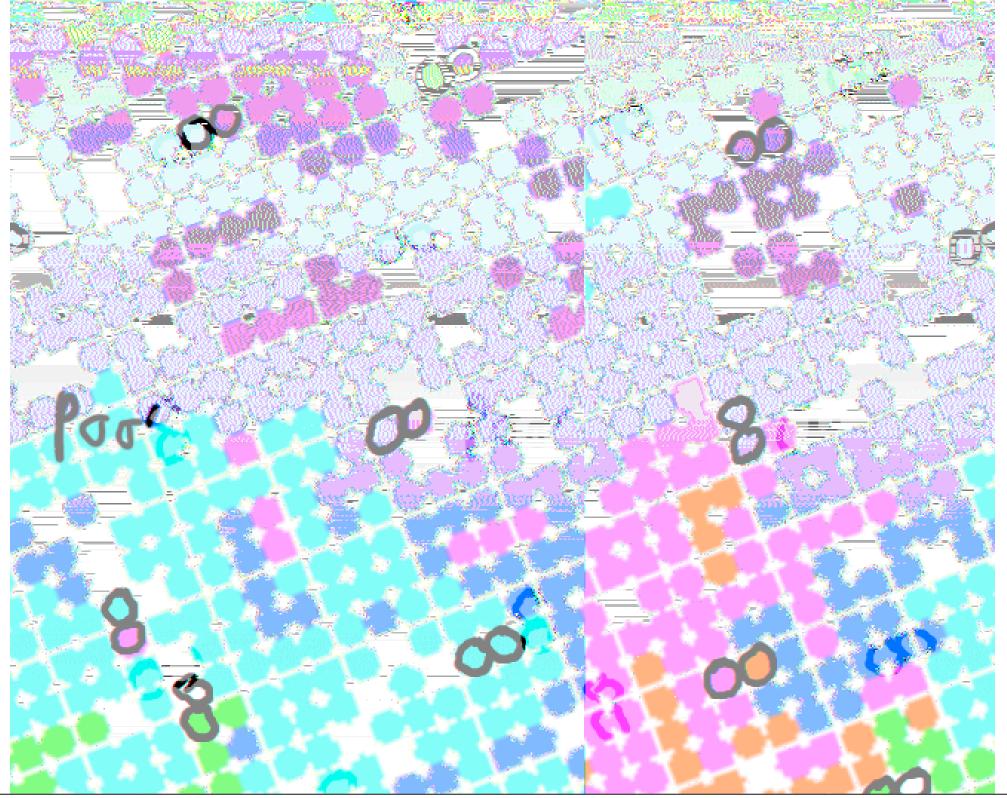


Dynamics of densities

$$\frac{dp_{A}}{dt} = \left(b_{A}q_{O|A} - d_{A}\right)p_{A}$$

 $90|_{A} \approx p_{0}$

no space ("mean field")



jeudi 19 septembre 2013

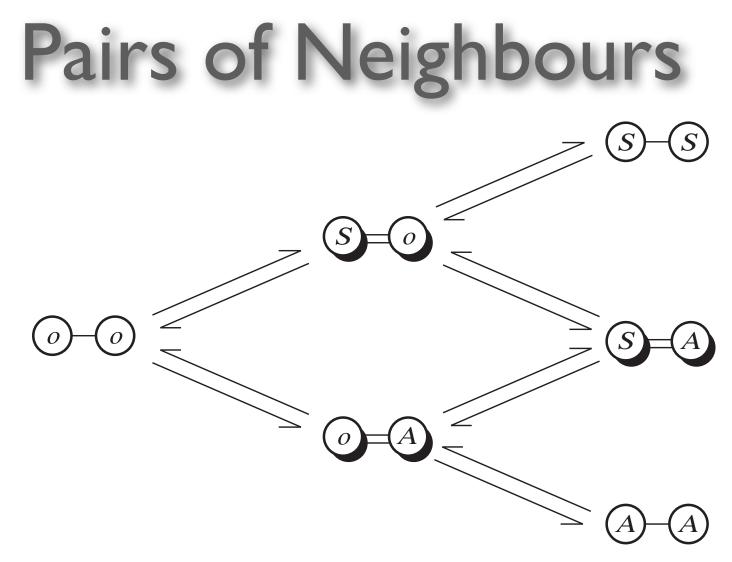


FIG. 2. The possible transitions between the state of doublets (pairs of neighbouring sites). Pairs that have a symmetric counterpart are shaded.

$$dt = (-s + m_s)\phi_{q_{s|oo}p_{oo}}$$

$$= [\phi b_s + \overline{\phi}(b_s + m_s)q_{s|os} + \mathbf{Oypanil}_{g_o} \mathbf{Pain}_{g_o|so} \mathbf{Pain}_{g_o|so}$$

jeudi 19 septembre 2013

A Cascade

The dynamics of Singletons depend on Pairs, who depend on Triplets, who depend on...

Closure approximation

$$\dot{p}_{\phi A} = + \left[(b_A + m_A) \frac{n-1}{n} q_{A|\phi} \right] \bar{p}_{\phi \phi} - \left[d_A + m_A \frac{n-1}{n} q_{\phi|A} \right] p_{\phi A} - \left[(b_S + m_S) \frac{n-1}{n} q_{S|\phi} \right] p_{\phi A} + \left[d_S + m_S \frac{n-1}{n} q_{\phi|S} \right] p_{SA} - \left[(b_A + m_A) \frac{n-1}{n} q_{A|\phi} + \frac{1}{n} b_A \right] p_{\phi A} + \left[d_A + m_A \frac{n-1}{n} q_{\phi|A} \right] p_{AA}$$

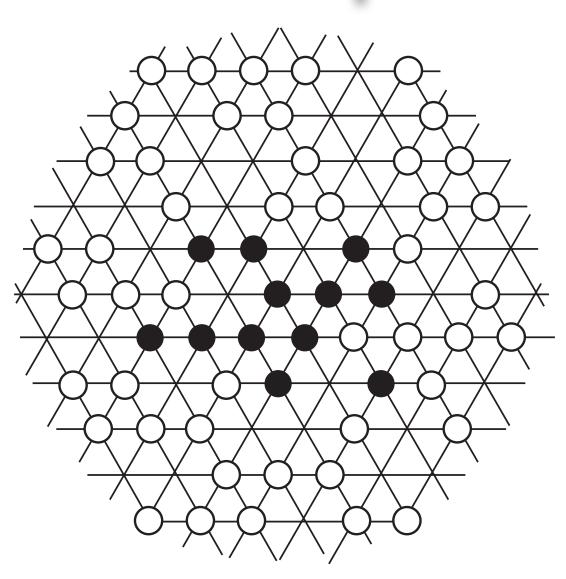
Invasion of a mutant

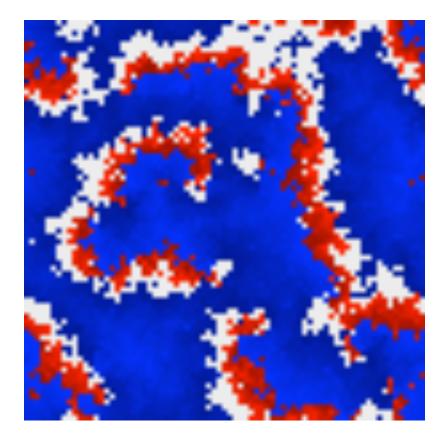
$$\frac{\mathrm{d}\mathbf{p}_A}{\mathrm{d}t} = \mathbf{M}(\mathbf{q}_A)\mathbf{p}_A$$

Dynamics of mutant given by sets of equations

- Fitness: dominant eigenvalue
- Unit of adaptation: corresponding eigenvector

Unit of adaptation





van Ballegooijen & Boerlijst 2004

ecosystem

biodiversity, nutrient cycles

population

competition, predation, epidemiology, social interactions

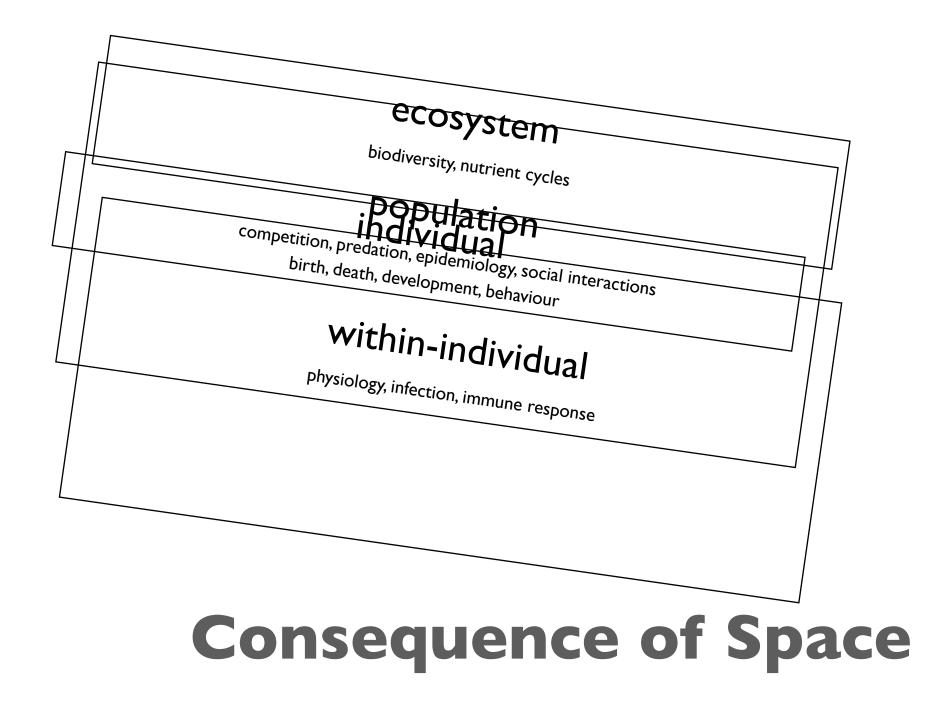
individual

birth, death, development, behaviour

within-individual

physiology, learning, infection, immune response

Levels of organisation

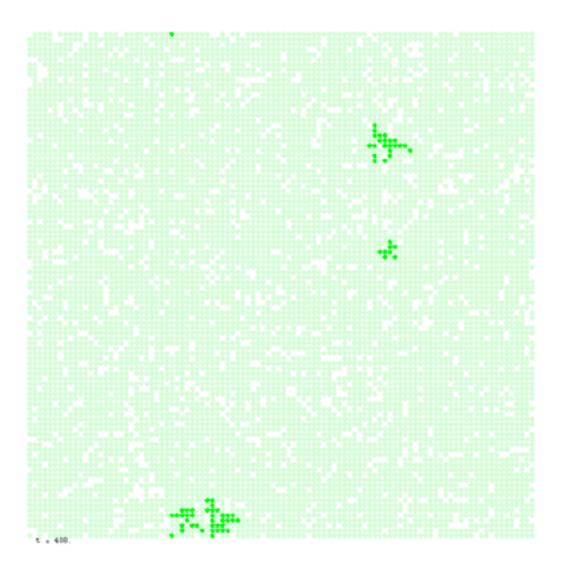


ALLES IS OVERAL

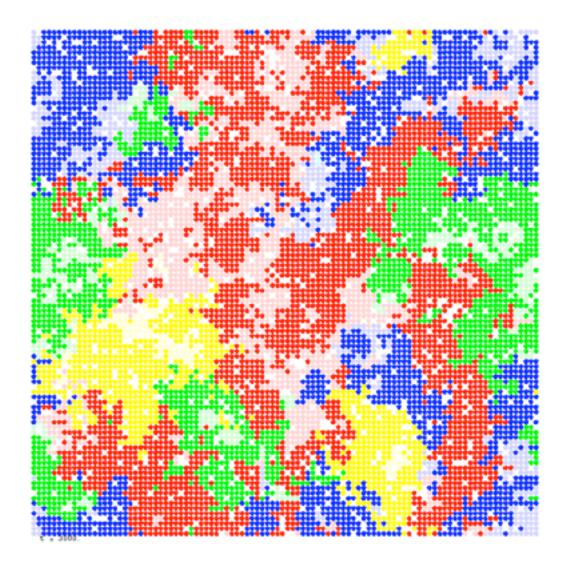
maar het milieu selecteert

EVERYTHING **IS EVERY** WHERE

but the environment selects



van Baalen & Jansen (2006)



van Baalen & Jansen (2006)